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Abstract

In recent years, interest has been growing in the field of spatial logics, which
have a variety of useful applications, including modular reasoning about data
update and specifying safety properties. Context Logic is a new spatial logic
designed for reasoning about data on the level of data-structures. It extends
first-order logic with connectives that permit reasoning about disjoint portions
of data. A feature of this and related logics is the presence of adjunct con-
nectives, which are important for defining weakest preconditions in Hoare
reasoning and for specifying perfect firewalls, for instance. Recent results, first
by Lozes, then Dawar, Gardner and Ghelli, have shown that adjuncts can be
eliminated from related logics.

In this report, we consider adjunct elimination in Context Logic, particularly
based on the model of ordered trees. We provide a counterexample to the
elimination of one of the adjuncts and a proof of elimination of the other. We
also discuss possible avenues for future investigation, such as modifications to
the Logic that may permit the elimination of the adjunct that was not possible
within the current definition for Context Logic for Trees.
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1 Introduction

1 Introduction

Structured data is a ubiquitous concept in computer systems: hard disk stor-
age systems, distributed databases and memory heaps are all examples of this.
Writing programs that correctly update and manipulate such structures is dif-
ficult, and when we have a correct program we would also like to prove that it
is indeed correct.

Hoare Logics are a standard tool for reasoning about data update. O’Hearn,
Reynolds and Yang introduced Separation Logic[6], extending Hoare’s ap-
proach to reasoning by extending first-order logic with a connective (and a
corresponding adjunct) that expresses the notion that properties hold on dis-
joint portions of a low-level memory heap. This allows one to apply Hoare rea-
soning to address the particular section of the data that is being manipulated,
while also expressing the notion that the remainder of the data is unchanged.
Thus, problems which had eluded modular reasoning in the traditional Hoare
approach, such as pointer arithmetic, could now be addressed in a modular
fashion. Since the logic operates on low-level heaps, one cannot reason about
complex data-structures, such as trees, without losing the abstraction the data-
structure provides.

Context Logic[2] is a new logic developed by Calcagno, Gardner and Zarfaty
to address this problem by reasoning on the same level as the data-structures
that are to be operated upon. Like Separation Logic, it extends first order logic
with spatial connectives and adjuncts, which permit reasoning about disjoint
portions of a data-structure. This development was motivated by the wish to
apply the modularity of Separation Logic to problems in reasoning about tree
update (XML update). Initial attempts were to develop a Hoare Logic based
on the Ambient Logic[3] of Cardelli and Gordon, a logic for reasoning locally
about static trees (such as for reasoning about security properties of firewalls).
It was found, however, that Ambient Logic was not sufficiently expressive for
this purpose. Thus, Context Logic introduces the notion that a tree may be split
at any point — one can then reason about the sub-tree that is to be modified
separately from the context. Context Logic, therefore, is able to reason both
about data-structures and contexts — essentially a data-structure from which
some sub-structure has been removed.

A feature common to Separation Logic, Context Logic and Ambient Logic,
which are all spatial logics, is the presence of the adjuncts1 of the spatial connec-
tives. These adjuncts provide important properties of their respective logics.
For instance, they are fundamental to expressing the weakest preconditions in
Hoare reasoning with Separation Logic and Context Logic. In Ambient Logic,
they can be used for expressing perfect firewalls.

Fascinatingly, however, Lozes proved that the adjunct connectives add
no expressive power in Separation Logic and static Ambient Logic (without
quantifiers)[5]. That is, every formula that uses adjunct connectives is equiv-
alent to (i.e. satisfied by exactly the same trees or heaps) some formula which
does not make use of such connectives. This result is rather surprising since,
in the logic with adjuncts, validity may be reduced to model checking, but
without the adjuncts, validity is undecidable, yet model checking is decidable
in PSPACE. This implies that, while a formula which makes use of adjuncts has

1The term ‘adjoint’ is also used in the literature.
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an equivalent adjunct-free formula, determining exactly what that formula is
is not decidable.

Dawar, Gardner and Ghelli later produced a new proof of adjunct elimina-
tion based on Ehrenfeucht-Fraı̈ssé games[4]. This technique resulted a proof
that is more modular in the logical connectives, and gave a better insight into
the generality of adjunct elimination. Their result also demonstrated that the
adjunct-free formula corresponding to some formula with adjuncts was con-
tained within a finite set, parametrised by its use of connectives, a further
curiosity given the undecidability result we have described.

Even more recent work by Calcagno, Gardner and Zarfaty has looked at
parametric expressivity. This new type of result helps to explain the apparent
contradiction introduced by the eliminability of adjuncts. The parametric in-
expressivity of the logic without adjuncts means that a formula with adjuncts
that has parameters (that is, we can replace specific components with arbitrary
formulae) has no equivalent without adjuncts. Thus the equivalent formula for
the adjunct formula with one set of parameters may have one structure, while
the equivalent formula for that same adjunct formula when given different
parameters may have a very different structure.

1.1 Overview

An interesting and natural question to ask is “Do these adjunct elimination
results extend to Context Logic?”. The tree model is of particular interest,
since Context Logic’s spatial splitting connective is more powerful than those
for Ambient Logic, and consequently an adjunct that is conceptually different
to those of Ambient Logic arises. This adjunct states that a context satisfies
the property that whenever any tree satisfying a particular property is placed
within the context hole the resulting tree satisfies a second specified property.

We shall begin by giving formal definitions for Context Logic, and the tree
model we shall be working with. Next, we shall look at the general problem
of adjunct elimination for Context Logic, and show that there are models for
Context Logic which do not admit adjunct elimination. We shall then show
an example of a logic and model for which adjunct elimination is possible, but
for which the proof technique based on Ehrenfeucht-Fraı̈ssé games cannot be
applied in a naı̈ve fashion.

Following on from this, we shall formalise Ehrenfeucht-Fraı̈ssé games for
Context Logic for Trees, which are adapted in a straight-forward manner from
those given by Dawar et al. for Ambient Logic. Next, we shall look specifically
at the question of adjunct elimination in Context Logic for Trees. We shall
give a counterexample to the elimination of the new adjunct, but give a games-
based proof that the other adjunct may be eliminated without reducing the
expressivity of the logic. An evaluation section shall follow, in which we shall
discuss how the properties we have shown may be adapted to other models for
Context Logic and consider how it may be possible to adapt the logic in order
to overcome the non-eliminability of the new adjunct.

2



1.2 Background

1.2 Background

1.2.1 Separation Logic

As we have stated previously, the key to Separation Logic’s success in reasoning
about data update is its use of a separating connective or “spatial conjunction”:
P ∗ Q. The meaning attached to this is that both P and Q hold but for distinct
portions of the data.

The Hoare triple {P} C {Q} essentially states that, if P holds initially, then Q
will hold after the program C is executed. The separating connective means
that a rule can be introduced that says if {P} C {Q} then also {P ∗ R} C {Q ∗ R}.
That is, since ‘∗’ ensures that R refers to a part of the heap that is entirely disjoint
from P and Q, when R holds before the heap update performed by C it also
holds after.

As well as ‘∗’, Separation Logic includes an adjunct connective ‘—∗’. When
P —∗ Q is satisfied by some heap, it means that when we combine this with
some heap that satisfies P the result satisfies Q. This is important in expressing
weakest preconditions: the most general condition that can be allowed to hold
before execution such that some arbitrary given condition holds after execution.
For instance, the following holds:

{(E 7→ −) ∗ ((E 7→ F) —∗ Q)} [E] := F {Q} (1.1)

What this means is that, for property Q to hold after F has been stored at
memory location E, the heap should map E to − and contain a disjoint portion
such that, when the heap mapping E to F is combined with it, the resulting
heap satisfies Q.

The adjuncts in Context Logic are similarly important for specifying such
weakest preconditions.

1.2.2 Adjunct Elimination

Lozes’ method for proving adjunct elimination was to define a set of bisimu-
lation equivalences between tree structures. These equivalences state that the
trees cannot be distinguished in a certain number of test steps, a notion that
is not dissimilar to the way in which games, parametrised by rank, may be
used to distinguish between trees. He proves that the number of equivalence
classes for a given number of test steps is finite. He then introduces character-
istic adjunct-free formulae for trees, parametrised by the number of test steps,
which are only satisfied by trees that are bisimilar (in the given number of test
steps) to the defining tree. Finally, he establishes that there is an equivalent
adjunct-free formula to any formula with adjuncts by taking the disjunction of
the characteristic formulae of the a finite set of non-equivalent (with respect to
a number of test steps derived from the adjunct formula) trees which satisfy
the adjunct formula.

In the games-based proof of Dawar et al., a different approach is used,
establishing that there are finitely many inequivalent formulae of a given rank
— such formulae correspond closely with the games played on that rank with
regard to which trees they can distinguish. It is then shown that the adjunct
moves in the games do not assist with discriminating between pairs of trees.
The relationship between games and formulae means that this can be used to

3
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infer that the inclusion of adjuncts does not increase the ability of formulae to
distinguish between trees, and thus they do not increase the expressive power
of the logic.

An additional result in these papers is that quantification (‘∃’ and ‘∀’) pre-
vents adjuncts from being eliminated in the logic. For this reason, we shall not
consider logics with quantification here.

4



2 Context Logic

2 Context Logic

In this section, we present the definitions and theory for Context Logic, and, in
particular, Context Logic for trees, which we shall use in subsequent sections.

2.1 Definitions

2.1.1 Basic Context Logic

We consider the general theory of Context Logic first, introducing the grammar,
the notion of a model and the forcing semantics for a model (that is, the relations
that state when an element of the model can be said to satisfy a formula of the
logic).

Definition 2.1. The basic Context Logic consists of a set of data formulae and a
set of context formulae which are defined by the grammars:

data formulae P ::=K(P)
∣∣∣ K C P structural formulae

P⇒ P
∣∣∣ f alse additive formulae (2.1)

context formulae K ::=I
∣∣∣ P B P structural formulae

K⇒ K
∣∣∣ False additive formulae (2.2)

We shall also use derived Boolean formulae, such as P∧P or ¬K, which may
be defined easily in terms of the given Boolean formulae. (e.g. ¬K , K⇒ False,
P1 ∧ P2 , ((P1 ⇒ (P2 ⇒ f alse))⇒ f alse).) All of the standard classical Boolean
formulae can be derived in this way.

Further, we define the following additional derived formulae:

• �P , True(P)

• P1 I P2 , ¬(P1 B ¬P2)

• K J P , ¬(K C ¬P)

Definition 2.2. A modelM for Context Logic is a tuple (D,C, ap, I) such that

1. D and C are sets;

2. ap : C ×D⇀ D is a partial function, called the application function;

3. I ⊆ C acts as a left identity to ap, that is

• ∀a ∈ D,∃i ∈ I.ap(i, a) is defined, and

• ∀a ∈ D,∀i ∈ I.if ap(i, a) is defined then ap(i, a) = a.

This general definition of a model has many useful and important instances,
some of which we shall examine in much greater detail later. In the ‘natural’
examples which motivate this abstract definition, the setD is usually considered
to be a set of data-structures, and the set C to be of contexts: effectively data-
structures but containing a hole, into which a data-structure may be placed to
produce another data-structure. It should come as no surprise, therefore, that
these models are generated by recursive grammars.

5
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We shall frequently use the symbols a, a′, a1, etc. (and sometimes b similarly)
to range over D, and the symbols c, c′, c1, etc. (and occasionally d similarly)
to range over C. We shall also (later) abbreviate ap(c, a) by c(a), a notational
convention which emphasises the relationship between the model and the logic.

Definition 2.3. Given a model,M, we define two satisfaction relations:M, a |=D
P andM, c |=K K inductively over the structure of data and context formulae
respectively.

M, a |=D K(P) iff ∃c ∈ C, a′ ∈ D.(ap(c, a′) = a andM, c |=K K andM, a′ |=D P)
(2.3)

M, a |=D K C P iff ∀c ∈ C.(ifM, c |=K K and
ap(c, a) is defined thenM, ap(c, a) |=D P) (2.4)

M, a |=D P1 ⇒ P2 iffM, a |=D P1 impliesM, a |=D P2 (2.5)
M, a /|=D f alse (2.6)
M, c |=K I iff c ∈ I (2.7)
M, c |=K P1 B P2 iff ∀a ∈ D.(ifM, a |=D P1 and

ap(c, a) is defined thenM, ap(c, a) |=D P2) (2.8)
M, c |=K K1 ⇒ K2 iffM, c |=K K1 implies c |=K K2 (2.9)
M, c /|=K False (2.10)

In the application case, we assume that ap(c, a′) = a means that ap(c, a′) is
defined and equal to a.

These satisfaction relations give meaning to the logic. Expressed informally,
the meaning of K(P) is that a satisfying data-structure may be split into a
context and another data-structure such that the context satisfies K and the
data-structure satisfies P. The K C P and P B P connectives are adjuncts of
application. What this means is that they express that what satisfies them gives
a certain result when used in an application. Specifically, if a data-structure
satisfies K C P then, whenever any context satisfying K is applied to it, the
resulting data-structure (if defined) satisfies P. Similarly, if a context satisfies
P1 B P2 then, whenever it is applied to any data-structure that satisfies P1, the
resulting data-structure (if defined) satisfies P2. The I connective is satisfied by
something that, when applied to any data-structure, returns that data-structure
(provided the application is defined).

We can also state the informal meanings of the derived connectives we have
defined. �P specifies that somewhere property P holds — that a context may
be split from the data-structure, leaving a data-structure that satisfies P. K J P
specifies that there exists some context satisfying K such that, when it is applied
to the given data-structure, the result satisfies P. P1 I P2 specifies that there
exists some data-structure satisfying P1 such that, when the given context is
applied to it, the result satisfies P2.

2.1.2 Context Logic with Zero

A useful extension to the basic logic is the addition of a structural data formula
0. Context Logic with Zero has an extended concept of model.

6



2.1 Definitions

Definition 2.4. A model,M, for Context Logic with Zero is a tuple (D,C, ap, I, 0)
where

1. (D,C, ap, I) is a model for Context Logic;

2. 0 ⊆ D;

3. the projection p : C → D defined by p(c) = a⇔ ∃o ∈ 0.ap(c, o) = a is a total
surjective function;

4. ∀c ∈ C,∀o ∈ 0.p(c) = o⇒ c ∈ I.

We also extend satisfaction for Context Logic with Zero, by adding the
following rule to the inductive definition of the satisfaction relations, which
otherwise remains the same as for Context Logic:

M, d |=D 0 iff d ∈ 0 (2.11)

The addition of zero essentially allows contexts to be mapped surjectively
onto data-structures. Quite naturally then, identity contexts map onto zeros.

With the added 0, we define another derived formula: P1 ∗P2 , (0BP1)(P2).
Informally, this formula specifies that the some part of the data-structure satis-
fies P1 and the rest satisfies P2.

2.1.3 Context Logic for Trees

The model that we shall primarily concern ourselves with is that of ordered
trees.

Definition 2.5. Given a signatures set of names Σ, ranged over by α, we define
(ordered) trees and tree contexts by the grammar:

trees a ::= 0
∣∣∣ α[a]

∣∣∣ a | a (2.12)

contexts c ::=
∣∣∣ α[c]

∣∣∣ a | c ∣∣∣ c | a (2.13)

We name the set of treesD and the set of contexts C.
For ordered trees, certain congruences hold. In particular, ‘ | ’ is associative,

and ‘0’ is a left and right identity with respect to it. Expressed formally:

0 | a = a = a | 0 (2.14)
0 | c = c = c | 0 (2.15)

a1 | (a2 | a3) = (a1 | a2) | a3 (2.16)
a1 | (a2 | c1) = (a1 | a2) | c1 (2.17)
a1 | (c1 | a2) = (a1 | c1) | a2 (2.18)
c1 | (a1 | a2) = (c1 | a1) | a2 (2.19)

Thus, for instance, we say

(α[0] | β[0]) | γ[0] = α[0] | (β[0] | γ[0]) (2.20)
0 | α[ | 0 | 0] = α[ ]. (2.21)

We shall also use the following basic and well-known properties concerning
the decomposition of trees:

7
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1. (a) If a1 | a2 = κ[a3], then either a1 = κ[a3] and a2 = 0 or a1 = 0 and
a2 = κ[a3].

(b) If c1 | a1 = κ[c2], then c1 = κ[c2] and a1 = 0.
(c) If a1 | c1 = κ[c2], then c1 = κ[c2] and a1 = 0.

2. (a) If a1 | a2 = a3 | a4 then either a1 = a3 | a′1 and a4 = a′1 | a2 or a2 = a′2 | a4
and a3 = a1 | a′2.

(b) If a1 | c1 = a2 | c2 then either a1 = a2 | a′1 and c2 = a′1 | c1 or c1 = b1 | c2
and a2 = a1 | b1.

(c) If c1 | a1 = c2 | a2 then either a1 = a′1 | a2 and c2 = c1 | a′1 or c1 = c2 | b1
and a2 = b1 | a1.

(d) If a1 | c1 = c2 | a2 then c1 = c′1 | a2 and c2 = a1 | c′1.
(e) If c1 | a1 = a2 | c2 then c1 = a2 | c′1 and c2 = c′1 | a1.

We define the application function ap : C ×D → D by:

ap( , a) = a (2.22)
ap(κ[c], a) = κ[ap(c, a)] (2.23)

ap(a1 | c, a) = a1 | ap(c, a) (2.24)
ap(c | a1, a) = ap(c, a) | a1 (2.25)

Notice that, by our definitions, (C,D, { }, {0}) is a model for Context Logic
with zero.

When working with the tree model, we use an extended definition of Con-
text Logic, incorporating connectives that are related to the structural connec-
tives in the tree and context grammars.

Definition 2.6. The Context Logic for Trees consists of data formulae and context
formulae constructed from the signature set Σ. They are defined as for Context
Logic with Zero, except with the addition of the following additional tree-
specific context formulae:

specific context formulae u[K]
∣∣∣ P | K ∣∣∣ K | P u ∈ Σ. (2.26)

Definition 2.7. The satisfaction relations for the Context Logic for Trees are
defined inductively using the same rules as Context Logic with Zero, taking
I = { } and 0 = {0}, with the following additions:

c |=K u[K] iff ∃c′ ∈ C.c = u[c′] and c′ |=K K (2.27)
c |=K P | K iff ∃a ∈ D, c′ ∈ C.c = a | c′ and a |=D P and c′ |=K K (2.28)
c |=K K | P iff ∃a ∈ D, c′ ∈ C.c = c′ | a and a |=D P and c′ |=K K (2.29)

(2.30)

The reader might wonder why we did not also define data formulae corre-
sponding to the grammar connectives for trees. The reason for this is that such
connectives can be defined in a straightforward manner based on the fragment
we have defined.

P1 | P2 , (P1 | )(P2) (2.31)
u[P] , (u[P | ])(0) (2.32)

8



2.2 Additional Notes

2.2 Additional Notes

It is worth noting that Context Logic is equipped with a sound and complete
Hilbert-style proof theory. However, since we do not make use of it here, we do
not present it. It has very recently been shown that Context Logic can presented
as standard Modal Logic[1] with a set of Sahlqvist axioms. Because of this, the
soundness and completeness of the proof theory follow from a general result
for Modal Logic.

9
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3 Adjunct Elimination

For Context Logic, we would say adjunct elimination holds if the expressive
power of the logic is the same whether or not it contains adjunct connectives.
Specifically, each formula which makes use of adjunct connectives is logically
equivalent to some formula which does not make use of those connectives in
the following sense:

P1 ≡ P2 ⇐⇒ {a ∈ D : a |= P1} = {a ∈ D : a |= P2} (3.1)
K1 ≡ K2 ⇐⇒ {c ∈ C : c |= K1} = {c ∈ C : c |= K2} (3.2)

(3.3)

In this section, we shall present some simple results concerning adjunct
elimination. In particular, we shall see examples of models for context logic
that do not admit adjunct elimination, and therefore demonstrate explicitly
that such a property is not inherent in the logic, and rather dependent on the
particular model. Also, we present a simple logic in which adjunct elimination
holds, yet does not submit trivially to proof of this fact through games.

3.1 Models that do not admit adjunct elimination

We now present some models for which adjunct elimination is not possible, to
demonstrate, for instance, that adjunct elimination is not a general property of
Context Logic (and similar logics).

Consider the sets

C = {1, c}
D = {a, b, d, h}

with application defined as in table 1.

ap 1 c
a a a
b b a
d d a
h h b

Table 1: Application relation for example model.

We assert that, in context logic without any model-specific formulae, adjunct
elimination is not possible for this model. In order to do this, we shall consider
truth sets for formulae, defined as

~P� , {a ∈ D | a |= P} (3.4)
~K� , {c ∈ C | c |= K} . (3.5)

Based on the satisfaction rules of the logic, we can derive equations for these
sets in terms of the logical connectives, which will allow us to consider which
sets of contexts and data structures correspond to truth sets of formulae.

10



3.1 Models that do not admit adjunct elimination

For context formulae:

~True� = {1, c} (3.6)
~K1 ∧ K2� = ~K1� ∩ ~K2� (3.7)
~K1 ∨ K2� = ~K1� ∪ ~K2� (3.8)
~¬K� = C \ ~K� (3.9)
~I� = {1} (3.10)

~P1 B P2� =
{
k ∈ C | ∀p ∈ ~P1�.k(p) ∈ ~P2�

}
(3.11)

For data formulae:

~true� = {a, b, d, h} (3.12)
~P1 ∧ P2� = ~P1� ∩ ~P2� (3.13)
~P1 ∨ P2� = ~P1� ∪ ~P2� (3.14)
~¬P� = D \ ~P� (3.15)
~K(P)� =

{
k(p) | k ∈ ~K�, p ∈ ~P�

}
(3.16)

~K C P� =
{
p ∈ D | ∀k ∈ ~K�.k(p) ∈ ~P�

}
(3.17)

To consider the statements expressible in a subset of the logic that includes
the Boolean operations, it is sufficient to consider partitions of the sets C andD
such that each set in each partition is the truth set of some formula. It is clear,
by (3.8) and (3.14), that any union of these is expressible as a disjunction of the
formulae. Suppose we have such a partition, P, then we can construct another
partition, P[A] for formula A, such that:

1. each subset in the partition P can be expressed as a union of subsets in
the partition P[A], and so any formula whose truth set was a union of
subsets in P is also a union of subsets in P[A];

2. the formula A is expressible as a union of subsets in P[A];

3. each S ∈ P[A] is the truth set of a Boolean combination of the formula A
and some formula whose truth set is in P.

P[A] may be defined as

P[A] , {~A� ∩ S, ~A�′ ∩ S | S ∈ P} \ {∅} . (3.18)

The properties we require are easily checked, with the last following from
(3.7), (3.9), (3.13) and (3.15).

Clearly, for contexts we can construct the partition {{1}, {c}} in any subset of
the logic which includes I. Since this partition is into singleton sets, we need
not consider any further refinement.

We shall show that for data formulae without adjuncts, the finest partition
we can construct is {{a}, {b}, {d, h}}. This may be constructed as follows:

P0 = {{a, b, d, h}} (3.19)
P1 = (P0)[(¬I)(true)] = {{a, b}, {d, h}} (3.20)

P2 = (P1)[(¬I)((¬I)(true))] = {{a}, {b}, {d, h}} (3.21)

11
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If it is possible to refine this partition any further, we would have to be
able to find some formula with truth set containing d but not h (or vice-versa).
In fact, we only require to show that such a formula can be constructed by
applying a connective to subformulae whose truth sets are themselves unions
of sets in the partition. It is helpful here to use the equations we have specified
that give the truth sets of formulae in terms of the truth sets of subformulae.

Clearly, applying Boolean connectives will not construct any new sets, and
so we need only consider terms of the form K(P). Notice that (K1 ∨ K2)(P) is
equivalent to K1(P) ∨ K2(P) and K(P1 ∨ P2) is equivalent to K(P1) ∨ K(P2). Thus
we only have to consider terms K(P) where ~K� ∈ {{1}, {c}}, ~P� ∈ P2. But these
are just {a}, {d, h} and {a, b}, as given in table 2, so we are done.

~K(P)� {1} {c}
{a} {a} {a}
{b} {b} {a}
{d, h} {d, h} {a, b}

Table 2: Truth sets of terms of the form K(P).

Suppose, as we may reasonably do, that D is some formula such that ~D� =
{b}. The formula (¬I) C D is verifiably only satisfied by h. Thus the adjunct C
may not be eliminated.

We now present another example of a context logic model, which demon-
strates that even symmetry in finite models is not sufficient for adjunct elimi-
nation to hold. This time C = D = {a, b, c, d, e}, and the application relation is
given by table 3.

ap a b c d e
a a b c d e
b b b b b b
c c b b b b
d d b b b b
e e b b b c

Table 3: Application relation for symmetric example model.

Here, we can partition D as {{a}, {b}, {c}, {d, e}} without adjuncts, but as
{{a}, {b}, {c}, {d}, {e}} with. Also, the C adjunct cannot be eliminated. Clearly,
{{a}, {b, c, d, e}} is the finest partition of Cwithout C, but, even without B, we can
improve this to {{a}, {b}, {c}, {d}, {e}}. (Consequently, we could eliminate C if we
kept B in this example.)

Now, let us consider extending Context Logic with constants for each ele-
ment of the sets C andD, so we have the additional formulae in the logic with
satisfaction (for c, c′ ∈ C, d, d′ ∈ D):

c′ |= kc ⇐⇒ c = c′ (3.22)
d′ |= pd ⇐⇒ d = d′ (3.23)

12



3.2 Adjunct elimination where games are not suitable

Obviously, for any finite model adjunct elimination holds with these ad-
ditional constructs. Thus we shall consider infinite models. In particular, the
model C = D = {e, f , ai, bi | i ∈ N}, with application defined as in table 4 does
not admit adjunct elimination. Specifically, k f C pe is not expressible without
adjuncts.

ap e f a j b j
e e f a j b j
f f f f e
ai ai f f f
bi bi e f f

Table 4: Application relation for infinite example model.

3.2 Adjunct elimination where games are not suitable

We now present a logic for which adjunct elimination can easily be shown to
hold through the use of truth sets, but for which a naı̈ve application of the
games-based proof is not applicable.

The logic that we shall consider is over models in the natural numbers,N,
and we shall denote it as L+,3

Definition 3.1. We define the set of formulae,A+,3 by the following grammar:

A,B ::= 0
∣∣∣ A + B

∣∣∣ A ∧ B
∣∣∣ ¬A

∣∣∣ > ∣∣∣ A B B
∣∣∣ div3 (3.24)

Definition 3.2. The satisfaction relation N |= A is defined as follows:

n |= 0 ⇐⇒ n = 0 (3.25)
n |= A + B ⇐⇒ ∃a, b ∈N s.t. a |= A, b |= B, and n = a + b (3.26)
n |= A ∧ B ⇐⇒ n |= A and n |= B (3.27)
n |= ¬A ⇐⇒ n /|= A (3.28)
n |= > (3.29)
n |= A B B ⇐⇒ ∀a, if a |= A then n + a |= B (3.30)
n |= div3 ⇐⇒ n ∈ {3m | m ∈N} (3.31)

We also define derived formulae A ∨ B , ¬(¬A ∧ ¬B), A I B , ¬(A B ¬B)
and 1 , ¬0 ∧ ¬(¬0 + ¬0). The first is obviously satisfied if and only if A or B is
satisfied (by de Morgan’s laws). Satisfaction for the second is given by:

n |= A I B ⇐⇒ n /|= A B ¬B (3.32)
⇐⇒ it is not the case that ∀a. if a |= A then n + a /|= B (3.33)
⇐⇒ ∃a s.t. it is not the case that if a |= A then n + a /|= B (3.34)
⇐⇒ ∃a s.t a |= A and n + a |= B (3.35)

The third is easily checked to be satisfied only by 1.
We shall show adjunct elimination by considering the truth sets of formulae

defined by
~A� , {n ∈N | n |= A} . (3.36)

13
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This will be done in two steps: first, we shall show that all of the truth sets of
formulae are of a particular form; we then shall show that all sets of that form
are the truth sets of formulae without adjuncts.

To facilitate the proof, we define

t(l,n) = {l + 3m | 0 ≤ m ≤ n} , (3.37)

and permit n = ∞. For S,T ⊆N, we define

S + T = {s + t |s ∈ S, t ∈ T} . (3.38)

If S =
⋃k

i=0 Si and T =
⋃l

j=0, we have

a ∈ S + T ⇐⇒ a = s + t, some s ∈ S, t ∈ T (3.39)
⇐⇒ a = s + t, s ∈ Si, t ∈ T j, 0 ≤ i ≤ k, 0 ≤, j ≤ l (3.40)
⇐⇒ a ∈ Si + T j (3.41)

⇐⇒ a ∈
k⋃

i=0

l⋃
j=0

(
Si + T j

)
. (3.42)

Also m ∈N | l ≤ m ≤ u can obviously be written as a union of sets of the
form t(l′,n′). A further observation is that

t(l,n) + t(l′,n′) = {(l + l′) + 3(m +m′) | 0 ≤ m ≤ n, 0 ≤ m′ ≤ n′} (3.43)
= {(l + l′) + 3m | 0 ≤ m ≤ (n + n′)} (3.44)
= t(l + l′,n + n′)). (3.45)

Finally, supposing l ≤ l′, if l′ = l+3k for some k, then t(l,n)∩t(l′,n′) = t(l′,min(n−
k,n′)), otherwise t(l,n) ∩ t(l′,n′) = ∅. We can extend this naturally to a finite
intersection of such sets.

Proposition 3.1. For every A ∈ A, ~A� can be written as a finite union of sets of the
form t(l,n).

Proof. The proof is by induction on the structure of formulae. We use the
alternative operators A ∨ B and A I B instead of A ∧ B and A B B, since the
latter are equivalent to ¬(¬A ∨ ¬B) and ¬(A I ¬B) respectively, and since we
consider negation.

Base cases:
A = 0:

~0� = 0 = t(0, 0).
A = >:

~>� =N = t(0,∞) ∪ t(1,∞) ∪ t(2,∞).
Inductive cases:
A = B + C:

Clearly

~B + C� = ~B� + ~C�. (3.46)
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3.2 Adjunct elimination where games are not suitable

By the inductive hypothesis,

~B� =
k⋃

i=0

t(li,ni) (3.47)

~C� =
k′⋃

j=0

t(l′i ,n
′

i ). (3.48)

Now

A =
k⋃

i=0

l⋃
j=0

(
t(li,ni) + t(l′j,n

′

j)
)

(3.49)

=

k⋃
i=0

l⋃
j=0

(
t(li + l′j,ni + n′j)

)
, (3.50)

as required.
A = B ∨ C:

a ∈ ~B∨C� if and only if a ∈ ~B� or a ∈ ~C�. That is, if and only if a ∈ ~B�∪ ~C�,
which, by the inductive hypothesis, is a finite union of sets of the form t(l,n) as
required.

A = ¬B:

~¬B� = ~B�′ (3.51)

=

k⋂
i=0

t(li,ni)′. (3.52)

But

t(li,ni)′ =N \ t(li,ni) (3.53)
= {m | 0 ≤ m < li} ∪ t(li + 1,ni) ∪ t(li + 2,ni) ∪ {m | li + 3ni < m} , (3.54)

which is a finite union of sets of the desired form. By applying distributivity
of ∩ over ∪, we get that ~A� is a finite union of finite intersections of such sets,
which is, by a previous observation, just a finite union of sets of the required
form.

A = >:
~>� =N = t(0,∞) ∪ t(1,∞) ∪ t(2,∞).

A = B I C:

~B I C� = {c − b | b ∈ ~B�, c ∈ ~C�, c ≥ b} . (3.55)

Since ~B� =
⋃k

i=0 t(li,ni) and ~C� =
⋃k′

j=0 t(l′j,n
′

j),

~A� =
k⋃

i=0

k′⋃
j=0

{
c − b | b ∈ t(li,ni), c ∈ t(l′j,n

′

j), b ≤ c
}

. (3.56)

Each set in this union is of the required form, since c − b = li − l′j + 3(m −m′).
A = div3:

~div3� = {0 + 3m | 0 ≤ m} = t(0,∞).
�
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For the next proposition, we shall use the symbol Fn, defined recursively
by:

F0 = 0
Fn = 1 + Fn−1 with 1 as defined previously.

It is easily seen that m |= Fn ⇐⇒ m = n.

Proposition 3.2. Every finite union of sets of the form t(l,n) is ~A� for some formula
A which does not use B.

Proof. First, let us consider the set t(l,n). It is clear that t(l,n) = {m | l ≤ m} ∩
{m | m ≤ l + 3n} ∩ {3m + r |m ∈N} for some r ∈ {0, 1, 2}, such that l ≡ r( mod 3)
(the choice of r for a given l is unique). Now consider the formula

Tl,n , (Fl +>) ∧ ¬(Fl+3n+1 +>) ∧ (div3 + Fr) (3.57)

Then

~Tl,n� = {l +m | m ∈N} ∩ (N \ {n +m | m ∈N}) ∩ {m + r | m ∈ {3k |k ∈N}}
(3.58)

= {m | l ≤ m} ∩ {m | m ≤ l + 3n} ∩ {3m + r |m ∈N} (3.59)
= t(l,n) (3.60)

as required. This works for finite n, but for t(l,∞) we have a similar formula

~Tl,∞� = {l +m | m ∈N} ∩ {m + r | m ∈ {3k |k ∈N}} (3.61)
= {m | l ≤ m} ∩ {3m + r |m ∈N} (3.62)
= t(l,∞) (3.63)

Now for a finite union of such sets

t(l1,n1) ∪ . . . ∪ t(lk,nk) = ~Tl1,n1 ∨ . . . ∨ Tlk,nk� (3.64)

as required. �

The reason this logic doesn’t yield simply to the game proof technique is
that two pairs of numbers, each of which cannot be discriminated between by a
formula of rank r, say, may be added to give a pair which may be discriminated
between. For instance,

1 |= ¬div3 2 |= ¬div3 (3.65)
1 |= ¬div3 1 |= ¬div3 (3.66)

but

1 + 1 |= ¬div3 2 + 1 /|= ¬div3. (3.67)

This means that we would not be able to prove the key theorem which
would permit adjunct elimination:

Non-theorem 3.3. For all ranks, r, and n,n′,m,m′ ∈N, if

(n,n′, r) ∈ DW and (3.68)
(m,m′, r) ∈ DW (3.69)

then
(n +m,n′ +m′, r) ∈ DW. (3.70)
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3.3 Evaluation

Although the notation used here has not yet been defined, it should become
clear in later sections what is meant. In short, such a theorem means that adding
theB connective to formulae in finite sets (the logically distinct formulae of rank
r) does not contribute to refining the partition of N that is generated. It says
that, as long as there are two pairs of numbers, each of which are ‘similar
enough’ (so they cannot be distinguished between by a certain set of formulae),
point-wise addition of the pairs produces a pair which are just as similar. The
above gives a counter-example to this, since we have two pairs that cannot be
discriminated between using div3, but whose point-wise sum produces a pair
which can be discriminated between with div3.

3.3 Evaluation

In subsection 3.1, we studied several simple models of context logic to demon-
strate that elimination of the adjuncts in Context Logic is not a property of the
logic itself, but depends very much on the model chosen. The examples given,
however, fall far short of providing any general criteria for adjunct elimination
properties to hold. Attempting to find some simple conditions which prevent
adjunct elimination for finite models may be quite possible, particularly by
considering the tricks used to define the models we have given.

Finding conditions that are exactly equivalent to adjunct elimination may
also be possible, but would probably be more difficult. In fact, any such
formulation would likely consist of a model condition that is just as difficult
to demonstrate in any particular case as a direct proof of adjunct elimination.
Nonetheless, finding such model conditions, both for models of basic Context
Logic and also Context Logic with model-specific connectives, would present
a different means to assess the question of adjunct elimination.

In subsection 3.2, we saw an example of a logic for which games cannot
be applied naı̈vely, but for which adjunct elimination holds. This raises the
question as to how useful the games-based proof technique might be.

The example we gave, however, is quite contrived, specifically in order to
prevent direct application of the proof technique. Additionally, it is very likely
that the proof can be adapted to cope with the problem. This is because the
key theorem in adjunct elimination using games, non-theorem 3.3, is stronger
than is strictly necessary in order to prove that the adjunct may be eliminated.
A weaker result, and one that may well be true is the following conjecture:

Conjecture 3.1. For all ranks, r, and n,n′,m ∈N, if

(n,n′, r) ∈ DW and (3.71)
(m,m′, r) ∈ DW (3.72)

then ∃m′ ∈N such that

(n +m,n′ +m′, r) ∈ DW. (3.73)

This result should still be sufficient. Indeed, we shall see in section 5 that
proving the stronger result is not possible in Context Logic for trees, and that
we have to consider a weaker result instead.

It might be possible to consider a result concerning games that is equivalent
to adjunct elimination. Explicitly determining this result would likely enhance
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the usefulness of games in determining whether adjunct elimination holds:
showing that such a result does not hold would then be sufficient to show that
adjunct elimination also does not hold, even if it is difficult to construct a direct
counterexample.
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4 Games

4 Games

In this section, we shall define Ehrenfeucht-Fraı̈ssé games for Context Logic for
Trees, as well as providing important results on soundness and completeness.
Although we present several important results here, they are not novel and are
merely reworkings of standard results, well known in the literature. Indeed,
they are simple adaptations of those given for Ambient Logic in [4].

4.1 Preliminaries

We present definitions that will be required for Ehrenfeucht-Fraı̈ssé games for
Context Logic for Trees.

The following definition establishes the concept of a rank for a formula. The
definition we will use is tailored particularly for Theorem 5.2.

Definition 4.1. For every formula, A, we define the rank of A,

|A| = r = (n, s,L), (4.1)

as a tuple with n, s ∈N, L ⊆ Σ such that

• n is the maximum nesting depth of all connectives, except for Boolean
connectives and ‘C’ (that is, the connectives 0, K(P), I, u[K], K | P, P | K
and P B P);

• s is the maximum nesting depth of the ‘C’ connective;

• and L is the finite set of labels used.

To help convey the notion expressed in this definition, we present some
examples of ranks for formulae.

|0| = (1, 0, ∅) (4.2)
|( f alse B f alse) ∧ ¬False)| = (1, 0, ∅) (4.3)

|ι1[True](0)| = (2, 0, {ι1}) (4.4)
|(0 B (¬((False C f alse) B (I C ¬ f alse))) C f alse))| = (3, 2, ∅) (4.5)

For various purposes, it is useful to have a partial ordering relation on ranks.

Definition 4.2. We say (n1, s1,L1) ≤ (n2, s2,L2) iff n1 ≤ n2, s1 ≤ s2 and L1 ⊆ L2.

Definition 4.3. We say that a tree, a1, is discriminated from a2 by a tree-formula
P iff a1 |= P and a2 /|= P (or vice-versa).

Similarly, we say that a context, c1, is discriminated from c2 by context-
formula K iff c1 |= K and c2 /|= K (or vice-versa).

Definition 4.4. LetT be a set of trees. We say that a1 and a2 areT -discriminated
iff a1 ∈ T and a2 < T .

Let K be a set of contexts. We say that c1 and c2 are K -discriminated iff
c1 ∈ K and c2 < K .

Lemma 4.1. For each finite rank r, there are finitely many inequivalent formulae of
rank r.
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Proof. By induction on the rank r, and cases on the outermost operator of the
formula.

If the outermost operator is 0, f alse, I or False, the result is immediate. If it
is u[K], K | P, P | K, P B P, K(P) or K C P, the subformulae have strictly smaller
rank, and therefore there are finitely many equivalence classes to choose from.
Also, in the u[K] case, there are finitely many choices of label, as it must be inL.
Thus, there are only finitely many inequivalent formulae with these operators
at their outermost.

All other formulae must be Boolean combinations of finitely many formulae
of rank r whose outermost operators are not Boolean. Upto equivalence, there
are only finitely many such Boolean combinations. �

This lemma allows us to make the following definitions:

Definition 4.5. For each finite rank r, let Pr be the finite set of data-formulae
such that every formula of rank r is equivalent to a formula in Pr.

For each finite rank r, let Kr be the finite set of context-formulae such that
every formula of rank r is equivalent to a formula in Kr.

Definition 4.6. The characteristic formula of a tree a with respect to rank r
denoted Dr

a is defined as

Dr
a =
∧
{P ∈Pr : a |= P} .

Dr
a has rank r by construction.

The characteristic formula of a context c with respect to rank r denoted Dr
c

is defined as
Dr

c =
∧
{K ∈ Kr : c |= K} .

Dr
c has rank r by construction.

Lemma 4.2. For all trees, a1, a2, contexts, c1, c2, and ranks, r:

(∀P ∈Pr. a1 |= P ⇒ a2 |= P)⇐⇒ a2 |= Dr
a1

(4.6)
(∀K ∈ Kr. c1 |= K ⇒ c2 |= K)⇐⇒ c2 |= Dr

c1
(4.7)

(∃P ∈Pr. a1 |= P ∧ a2 /|= P)⇐⇒ a2 /|= Dr
a1

(4.8)
(∃K ∈ Kr. c1 |= K ∧ c2 /|= K)⇐⇒ c2 /|= Dr

c1
(4.9)

(∀P ∈Pr. a1 |= P ⇔ a2 |= P)⇐⇒ a2 |= Dr
a1

(4.10)
(∀K ∈ Kr. c1 |= K ⇔ c2 |= K)⇐⇒ c2 |= Dr

c1
(4.11)

a2 |= Dr
a1
⇐⇒ a1 |= Dr

a2
(4.12)

c2 |= Dr
c1
⇐⇒ c1 |= Dr

c2
(4.13)

Proof. For (4.6), by definition:

a2 |= Dr
a1
⇔ a2 |=

(∧
{P : P ∈Pr.a1 |= P}

)
(4.14)

⇔ ∀P ∈Pr.a1 |= P⇒ a2 |= P. (4.15)

Part (4.8) is immediate from (4.6).
For (4.10), the ⇒ case is immediate from (4.6). For the ⇐ case, assume

a2 |= Dr
a1

and a1 |= P. Hence, a2 /|= ¬P. By (4.6), a1 /|= ¬P, and so a1 |= P.
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For (4.12), assume that a2 |= Dr
a1

. Then, by (4.10), ∀P ∈Pr.a2 |= P =⇒ a1 |=
P. Thus, by (4.6), a1 |= Dr

a2
. (The implication in the other direction is the same.)

Proofs of (4.7), (4.9), (4.11) and (4.13) are just the same as the above.
�

Lemma 4.3. Let T be a set of trees such that, for any T -discriminated pair (a1, a2),
there exists a formula Pa1,a2 of rank r that discriminates a1 from a2. Then T can be
defined by a rank-r formula P.

Let K be a set of trees such that, for any K -discriminated pair (c1, c2), there exists
a formula Kc1,c2 of rank r that discriminates c1 from c2. Then C can be defined by a
rank-r formula K.

Proof. Consider
PT =

{
P ∈Pr : ∃a2 ∈ T .P⇔ Dr

a2

}
.

We see PT ⊆ Pr so it is finite. Hence, Q =
∨

PT is a formula of rank r. We
shall show that a |= Q if and only if a ∈ T .

Suppose a ∈ T . By the definition of Pr, there exists P′ ∈ Pr which is
equivalent to Dr

a. Hence, a |= P′ and P′ ∈PT , and thus a |= Q.
Now suppose a |= Q. Then a |= P′ for some P′ ∈Pr. P′ is equivalent to Dr

a2

for some a2 ∈ T . Hence, a |= Dr
a2

. If a < T , then there exists a rank-r formula
that discriminates between a1 and a2. But a |= Dr

a2
, so this is not possible. Hence,

a ∈ T .
The proof for contexts is essentially the same. �

4.2 Games

We now define the Ehrenfeucht-Fraı̈ssé games that we shall use to prove adjunct
elimination. The game is either played on a pair of trees or a pair of contexts,
and also has an associated rank, r. Two players participate in the game: Spoiler
and Duplicator.

The state of the game at any time is given by a triple consisting of a pair of
trees or contexts and a rank. Thus game states are either (a, a′, r) or (c, c′, r) for
some a, a′ ∈ D, c, c′ ∈ C and finite rank r. The initial state is just such a triple.

At each round of the game, Spoiler selects a move to play, provided the rank
permits it and that the conditions of the move can be met. For some moves,
Spoiler can win immediately. For others, the game continues with a different
pair of trees or contexts and a smaller rank. Still others require Duplicator to
respond to Spoiler’s move, and the game continues with a new state of smaller
rank, which Spoiler may have some further choice in determining.

Definition 4.7. The moves which can be played from a given game state depend
on whether trees or contexts are currently in play. At the start of each move,
Spoiler is allowed to select either of the trees a, a′ (or contexts c, c′). Within
this definition, we shall call whichever Spoiler chooses b (or d) and the other
b′ (or d′). Additionally, the availability of moves is dependent on the rank.
Specifically, for the rank (n, s,L), the K C P move may only be played when
s > 0 and the other moves may only be played when n > 0.

For the game (a, a′,L), the moves are:
0 move Spoiler chooses b so that b = 0 and b′ , 0, and wins.
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K(P) move Spoiler chooses b and a context c1 ∈ C and tree a1 ∈

D such that b = c1(a1). Duplicator then chooses a
context c′1 ∈ C and tree a′1 ∈ D such that b′ = c′1(a′1).
Spoiler then decides whether the game will continue
with (c1, c′1, (n − 1, s,L)) or (a1, a′1, (n − 1, s,L)).

K C P move Spoiler chooses b and a context c1 ∈ C. Duplicator
then chooses a context c′1 ∈ C. Spoiler then decides
whether the game will continue with (c1, c′1, (n, s −
1,L)) or (c1(b), c′1(b′), (n, s − 1,L)).

For the game (c, c′,L), the moves are:
I move Spoiler chooses d so that d = and d′ , , and wins.
K | P move Spoiler chooses d and a context c1 ∈ C and tree a1 ∈ D

such that d = c1 | a1. Duplicator then chooses a
context c′1 ∈ C and tree a′1 ∈ C such that d′ = c′1 | a

′

1.
Spoiler then decides whether the game will continue
with (c1, c′1, (n − 1, s,L)) or (a1, a′1, (n − 1, s,L)).

P | K move Spoiler chooses d and a context c1 ∈ C and tree a1 ∈ D

such that d = a1 | c1. Duplicator then chooses a
context c′1 ∈ C and tree a′1 ∈ C such that d′ = a′1 | c

′

1.
Spoiler then decides whether the game will continue
with (c1, c′1, (n − 1, s,L)) or (a1, a′1, (n − 1, s,L)).

u[K] move Spoiler chooses d and a label κ ∈ L such that d =
κ[c1] for some c1 ∈ C. If d′ = κ[c′1] for some c′1 ∈ C
then the game continues with (c1, c′1, (n − 1, s,L)).
Otherwise, Spoiler wins.

P B P move Spoiler chooses d and a tree a1 ∈ D. Duplicator then
chooses a tree a′1 ∈ D. Spoiler then decides whether
the game will continue with (a1, a′1, (n − 1, s,L)) or
(d(a1), d′(a′1), (n − 1, s,L)).

Within the definition we have given for games, only the means by which
Spoiler can win are explicitly stated. It is quite possible, however, for a game
to enter such a state that Spoiler is unable to make a move. In this case, we say
that Duplicator wins the game.

The outcome of individual games is not necessarily important. For instance,
either player might make a poor series of moves, allowing the other player to
win, where a victory could have easily be obtained by the player. Instead, we
talk about winning strategies. One player has a winning strategy if he can win
the game regardless of how the other player plays.

Definition 4.8. We define SWD and SWC to be the sets of games of the forms
(a, a′, r) and (c, c′, r) respectively for which Spoiler has a winning strategy. Simi-
larly, we define DWD and DWC to be the sets of games of the forms (a, a′, r) and
(c, c′, r) respectively for which Duplicator has a winning strategy.

For any given game, either Spoiler or Duplicator must have a winning
strategy. Suppose, for instance, that Spoiler does not have a winning strategy
for some game. Then there must be some strategy that Duplicator may use,
such that no matter how Spoiler plays, he does not win. That is, Duplicator has
a winning strategy.

The following lemma, downward closure, is simple (it holds easily by the
definition of the games) yet useful.

22



4.3 Game soundness

Lemma 4.4. If Duplicator has a winning strategy for the game (a, a′, r) (or (c, c′, r))
then for any r′ ≤ r, Duplicator has a winning strategy for the game (a, a′, r′) (or
(c, c′, r′)).

Proof. In the game (a, a′, r′), Spoiler may only play moves he could have played
in the game (a, a′, r). Since those moves did not give him a winning strategy,
he cannot have one in the game (a, a′, r′), and so Duplicator has a winning
strategy. �

By a simple corollary, if Spoiler has a winning strategy for (a, a′, r′) then he
has a winning strategy for (a, a′, r) where r ≥ r′.

4.3 Game soundness

We now state and prove that the games we have defined are sound with respect
to the logic. The notion of soundness, informally stated, is that: if some formula
of rank r discriminates between a pair of trees or contexts, then Spoiler has a
winning strategy for the game of rank r on those trees or contexts.

Lemma 4.5. If there exists a data-formula P of rank r such that a |= P and a′ /|= P,
then Spoiler has a winning strategy for the game (a, a′, r).

If there exists a context-formula K of rank r such that c |= K and c′ /|= K, then
Spoiler has a winning strategy for the game (c, c′, r).

Proof. The proof is by induction on the structure of the formula, P or K. We
look at the cases for the outermost operator. In each case, Spoiler plays the
corresponding move in the game in order to win inductively.

P = 0:
This case is trivial: n ≥ 1, so Spoiler can play the 0 move and win the game.

P = K1(P1):
Spoiler plays the K(P) move, choosing a. Since a |= P, Spoiler can choose a
context c1 ∈ C and tree a1 ∈ D such that a = c1(a1), c1 |= K1 and a1 |= P1.
Duplicator chooses c′1 ∈ C, a′1 ∈ D such that a′ = c′1(a′1). Since we know that
a′ /|= P, we must have either c′1 /|= K1 or a′1 /|= P1. We also know that K1 and
P1 have rank at most (n − 1, s,L), and so in the former case, Spoiler has a
winning strategy for the game (c1, c′1, (n − 1, s,L)) by induction and downward
closure. Similarly, in the latter case, Spoiler will have a winning strategy for
the game (a1, a′1, (n − 1, s,L)). In future cases, we shall consider the use of
downward closure implicit when using induction to show that Spoiler has a
winning strategy.

P = K1 C P1:
Spoiler plays the KCP move, choosing a′. Spoiler chooses a context c′1 |= K1 such
that c′1(a′) /|= P1. (Such a c′1 must exist, or else we would have a′ |= P.) Duplicator
chooses a context c1. If c1 /|= K1, then Spoiler can choose to continue with the
game (c1, c′1, (n, s − 1,L)), for which he has a winning strategy by induction.
Otherwise, c1 |= K1 and so c1(a) |= P1. Thus, by induction, Spoiler has a winning
strategy by choosing to continue with the game (c1(a), c′1(a′), (n, s − 1,L)).

K = I:
This case is trivial: n ≥ 1, so Spoiler can play the I move and win the game.

K = P1 B P2:
Spoiler plays the P B P move, choosing c′. Spoiler chooses a tree a′1 |= P1
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such that c′(a′1) /|= P2. (Such a a′1 must exist, or else we would have c′ |= K.)
Duplicator chooses a tree a1. If a1 /|= P1, then Spoiler can choose to continue with
the game (a1, a′1, (n− 1, s,L)), for which he has a winning strategy by induction.
Otherwise, a1 |= P1 and so c(a1) |= P2. Thus, by induction, Spoiler has a winning
strategy by choosing to continue with the game (c(a1), c′(a′1), (n − 1, s,L)).

K = P1 | K1:
Spoiler plays P | K move, choosing c. Spoiler can find a1 ∈ D, c1 ∈ C such that
c = a1 | c1, a1 |= P1 and c1 |= K1. Duplicator chooses a′1 ∈ D, c′1 ∈ C such that
c′ = a′1 | c

′

1. Since a′ /|= K, either a′1 /|= P1 or c′1 /|= K1. In the former case, Spoiler
has a winning strategy for (a1, a′1, (n − 1, s,L)) by induction, and so may choose
to continue with that game to give a winning strategy. In the latter, Spoiler has
a winning strategy for (c1, c′1, (n − 1, s,L)) by induction, and so will achieve a
winning strategy by continuing with that game.

K = K1 | P1:
This case is symmetric to the K = P1 | K1 case.

K = κ[K1]:
Spoiler plays the u[K] move, choosing c = κ[c1]. If c′ , κ[c′1] then Spoiler wins.
Otherwise, we know K1 has a suitably smaller rank and so by induction Spoiler
has a winning strategy when the game continues with (c, c′, (n − 1, s,L)).

�

4.4 Game completeness

Here, we state and prove that the games we have defined are complete with
respect to the logic. Informally, completeness means that: if Spoiler has a
winning strategy for a game of rank r, the two trees or contexts are discriminated
between by a formula of rank r.

Lemma 4.6. If Spoiler has a winning strategy for the game (a, a′, r) then there exists
a formula, P, of rank at most r that discriminates a from a′.

If Spoiler has a winning strategy for the game (c, c′, r) then there exists a formula,
K, of rank ≤ r that discriminates c from c′.

In the proof, where r = (n, s,L) we shall use r− to denote (n, s − 1,L) when
we are discussing the K C P move and to denote (n − 1, s,L) otherwise.

Proof. We proceed by induction on the rank r and by cases on the first move
Spoiler makes in his winning strategy for the game. At the start of each move,
Spoiler may choose either a or a′ (equivalently c or c′). We assume without loss
of generality that he chooses a.

0 move:
Here, a and a′ are distinguished by the formula 0.

K(P) move:
For his winning strategy, Spoiler chooses c1 ∈ C, a1 ∈ D such that a = c1(a1).
Now take P to be Dr−

c1
(Dr−

a1
), which has rank r. We know that a |= P. Suppose

that a′ |= P. Then there exist c′1 ∈ C, a′1 ∈ D such that a′ = c′1(a′1), c′1 |= Dr−
c1

and a′1 |= Dr−
a1

. Thus c1 and c′1 cannot be discriminated by a formula of rank r−,
and similarly a1 and a′1 cannot be discriminated by a formula of rank r− either.
Hence, by the inductive hypothesis, Duplicator has a winning strategy for the
games (c1, c′1, r

−) and (a1, a′1, r
−), which contradicts the assumption that Spoiler

has a winning strategy for (a, a′, r). Hence a′ /|= P and we are done.
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K C P move:
For his winning strategy, Spoiler chooses a and some new c1 ∈ C. Now take P
to be Dr−

c1
J Dr−

c1(a), which has rank r− = (n, s − 1,L). Assume for a contradiction
that a′ |= P. Then there exists a c′1 with c′1 |= Dr−

c1
and c′1(a′) |= Dr−

c1(a). Thus the
pairs c1, c′1 and c1(a), c′1(a′) each cannot be discriminated by any formula of rank
r−. Hence, by the inductive hypothesis, Duplicator has a winning strategy for
the games (c1, c′1, r

−) and (c1(a), c′1(a′), r−), contradicting the fact that Spoiler has
a winning strategy. Hence a′ /|= P and we are done.

I move:
In this case, selecting K = I discriminates between the contexts.

P B P move:
For his winning strategy, Spoiler chooses c and some new a1 ∈ D. Now take K
to be Dr−

a1
I Dr−

c(a1), which has rank r− = (n − 1, s,L). Assume for a contradiction
that c′ |= K. Then there exists a a′1 with a′1 |= Dr−

a1
and c′(a′1) |= Dr−

c(a1). Thus the
pairs a1, a′1 and c(a1), c′(a′1) each cannot be discriminated by any formula of rank
r−. Hence, by the inductive hypothesis, Duplicator has a winning strategy for
the games (a1, a′1, r

−) and (c(a1), c′(a′1), r−), contradicting the fact that Spoiler has
a winning strategy. Hence c′ /|= P and we are done.

K | P move:
For his winning strategy, Spoiler chooses c1 ∈ C, a1 ∈ D such that c = c1 | a1.
Now take K to be Dr−

c1
| Dr−

a1
, which has rank r. We know that c |= K. Suppose

that c′ |= K. Then there exist c′1 ∈ C, a′1 ∈ D such that a′ = c′1 | a′1, c′1 |= Dr−
c1

and a′1 |= Dr−
a1

. Thus c1 and c′1 cannot be discriminated by a formula of rank r−,
and similarly a1 and a′1 cannot be discriminated by a formula of rank r− either.
Hence, by the inductive hypothesis, Duplicator has a winning strategy for the
games (c1, c′1, r

−) and (a1, a′1, r
−), which contradicts the assumption that Spoiler

has a winning strategy for (a, a′, r). Hence a′ /|= P and we are done.
P | K move:

This case is just symmetrical to the K | P case.
u[K] move:

Spoiler selects κ ∈ L such that c = κ[c1]. If Spoiler wins because c′ , κ[c′1] then
we can choose K = κ[True] and we are done. Otherwise, c′ = κ[c′1] and Spoiler
has a winning strategy for the game (c1, c′1, r

−). By induction, there is a formula
K′ such that c1 |= K′ and c′1 /|= K′. Choose K = κ[K′], and we are done. �

4.5 Evaluation

In our definition of ranks, we separated out the K C P connective specifically.
The reason for doing this is that we can tell exactly from the rank of a formula
whether or not it contains the ‘C’ adjunct, which will be necessary in our
reasoning about its elimination. This raises the question, ”Why not separate
the other connectives likewise?” That is what is done in the proof for Ambient
Logic in [4], however, we choose not to distinguish the other connectives, since
this permits more flexibility over choice of moves in games, which we shall
put to use in proofs in section 5. We could, of course, have chosen to separate
out the ‘B’ adjunct also, however, the presentation here is motivated by the
proof of elimination of the ‘C’ adjunct and, since we shall see that ‘B’ cannot
be eliminated in Context Logic for Trees, separating ‘B’ from the rest is not
particularly useful.
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Of course, it is certainly possible that the proof we shall present can be
adapted to use a rank which distinguishes all connectives, which would imply
that a formula without ‘C’ has an equivalent within a smaller set than the
current proof asserts. This is not, however, likely to be of much significance,
since determining exactly which formula in the finite set is equivalent is not
decidable.

The reader may have observed that some of the definitions given above
could have been expressed in terms of truth sets, which we have looked at
previously in scrutinising adjunct elimination. However, since truth sets them-
selves do not have great use in the framework of games in which we are
working, the use of more direct definitions avoids the addition of unnecessary
obscurity.

As we have already mentioned, it has been shown very recently that Context
Logic can be viewed as Modal Logic with Sahlqvist axioms. This means that
soundness and completeness results for games can probably be derived from
such general results for Modal Logic[1], instead of being derived from first
principles, as here.
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5 Adjunct Elimination in Context Logic for Trees

In this section, we investigate adjunct elimination for Context Logic for ordered
trees. Specifically, we see what difficulties lie in naı̈vely applying the proof
methodology used in [4], and demonstrate the existence of a counterexample
to elimination of the ‘B’ adjunct. We also provide a proof, using the games
methodology, that the ‘C’ adjunct may be eliminated.

5.1 Overview

Given the game framework that we have now established for Context Logic
for trees, we would now expect to proceed to attempt adjunct elimination by
proving a conjecture, such as the following:

Conjecture 5.1. For all ranks r, a, a′ ∈ D and c, c′ ∈ C, if

(a, a′, r) ∈ DWD (5.1)
(c, c′, r) ∈ DWC (5.2)

then
(c(a), c′(a′), r) ∈ DWD (5.3)

This conjecture essentially expresses that playing either the K C P or P B P
move in a game does not help Spoiler to achieve a winning strategy. (In fact,
not only this but also that any response that Duplicator makes in the move
will give him a winning strategy, provided that it is ‘sufficiently similar’ to
Spoiler’s choice. As we have discussed in subsection 3.3, this is a stronger
condition than would be necessary to prove adjunct elimination.) With such
a result, we could then deduce the adjunct eliminability property using the
results we have already proved that link games and formulae.

However, in attempting to prove this, we run into difficulties, particularly
when we think about Spoiler playing the K(P) move on the game (c(a), c′(a′), r).
In this move, Spoiler could, for instance, split c(a) into c1 and a1 = c2(a) such
that c = c1 ◦ c2. This presents Duplicator with a significant obstacle, since the
fact that Duplicator has a winning strategy for the game (c, c′, r) is not enough
to guarantee that c′ can be split in a similar way.

This problem is, in fact, sufficient to put an end to the hope of proving
the conjecture. We shall, guided by this, construct a counterexample which
demonstrates that the ‘B’ adjunct cannot be eliminated as would be possible if
the conjecture held true.

5.2 Counterexample to elimination of the ‘B’ adjunct

We shall now demonstrate that the ‘B’ adjunct cannot be eliminated from Con-
text Logic for Trees. In particular, we shall show a counterexample: a formula
that does not have an equivalent formula that does not make use of ‘B’.

Proposition 5.1. There is no formula without the B connective which is equivalent to
the formula KB = 0 B (True(β[0])).
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Proof. Suppose for a contradiction that K′ is such an equivalent formula. Let n
be the greatest nesting depth of the operator u[K] in K′.

We recursively define some convenient context structures:

c0 = α[ ] ci+1 = α[c0] (5.4)
d0 = β[ ] di+1 = α[d0] (5.5)

Clearly ci /|= 0 B (True(β[0])), but di |= 0 B (True(c[0])) for all i.
We claim, however, that there is no formula K′, not using ‘B’ such that

ci /|= K′, but d j |= K′ for all i and j ≥ l for some l. To prove this claim, we proceed
by induction on the nesting depth, n, of the u[K] connective, supposing that
some such K′ exists.

For n = 0, the u[K] connective is not used in K′ at all, and so if d0 |= K′, we
have c0 |= K′ also. (This is since no other connective can distinguish the labels
α and β.)

For n ≥ 1, we consider what the formula K′ may be. K′ is equivalent to
some formula in disjunctive normal form (we manipulate the outer Boolean
connectives, treating subformulae with non-Boolean outermost connectives as
propositional atoms). We can therefore assume that K′ is in this form. K′ can
only be a finite disjunction, and therefore it must have some component which
is satisfied by an infinite number of the di contexts, but none of the ci contexts.
Thus, K′ has a subterm of the form I, K | P, P | K or u[K], which has nesting
depth k ≤ n and is either satisfied by all d j for all j ≥ l and by no ci, or is satisfied
by all ci and no d j for j ≥ l.

Clearly, it could not be I. If it is K | P or P | K then 0 |= P, ci /|= K and d j |= K
(or vice-versa). Since we have the same criteria on K, we can proceed this way
until we obtain a subterm of the form u[K′′] which is satisfied by d j and not ci
(or vice-versa) for all i and j ≥ l.

Once we have a subterm of the form u[K] which is satisfied by d j and not ci
(or vice-versa) for any i and j ≥ l, we see this must be of the form α[K] for some
K which has nesting depth of u[K] at most n − 1. Also, K is satisfied by d j and
not ci (or vice-versa) for any i and j ≥ l − 1. But by the induction hypothesis,
such a K does not exist.

We have thus shown that there is no K′ which is equivalent to KB and hence
we have a counterexample to elimination of the ‘B’ adjunct.

�

Informally, this counterexample exploits the fact that context connectives
can, essentially, only look to a bounded depth within the context. The K(P)
connective permits looking at an arbitrary depth within a tree, but the only
connectives that permit using tree connectives within a context formula are
P B P, K | P and P | K. The first of these does allow us to look effectively within
a context at any depth, but the latter only permit us to look at arbitrary depth
in branches of the context which are trees. The counterexample exploits this by
hiding the difference between two trees in a context branch that is beyond the
depth bound of the formula that is potentially equivalent to a formula with the
‘B’ adjunct.
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5.3 Elimination of the ‘C’ adjunct

Since we have demonstrated a counterexample to the elimination of ‘B’, we
know that conjecture 5.1 is too strong to be provable. Instead, we state and
prove a weaker theorem which allows us to prove elimination of the ‘C’ adjunct
alone. This theorem essentially implies that, whenever Spoiler plays the K C P
move, Duplicator can respond with the same context that Spoiler chose and
have a winning strategy.

Theorem 5.2. For all ranks, (n, s,L), for all a, a′ ∈ D, c, c′ ∈ C, if

(a, a′, (n, s,L)) ∈ DWD (i)
(c, c′, (n, s,L)) ∈ DWC (ii)

then for all contexts d ∈ C

(d(a), d(a′), (n, s,L)) ∈ DWD (A)
(d | a, d | a′, (n, s,L)) ∈ DWC (B)
(a | d, a′ | d, (n, s,L)) ∈ DWC (C)

(d ◦ c, d ◦ c′), (n, s,L)) ∈ DWC. (D)

For the purposes of this proof, we assume without loss of generality that
in a game move Spoiler operates on the left hand context. We can make this
assumption since the argument in the other case is identical upto renaming the
variables, and we never assume that Spoiler will make this choice in moves
other than that which we are directly considering (however, naturally, Spoiler
could make this choice).

Proof. By induction on the rank r, and by cases on the possible moves that
Spoiler may make in the games which we are to show that Duplicator will win.
We denote the hypothesis that the proposition holds for lesser rank by IHr, to
avoid confusion with inner inductions that we shall use.

We treat each part of the theorem separately, although they are interdepen-
dent inductively.

(A): (d(a), d(a′), (n, s,L)) ∈ DWD. (Data-structure moves apply.)
0 move:

If Spoiler can play this move, d(a) = 0 and d(a′) , 0. Therefore d = and a = 0.
Further, a′ , 0. This implies that Spoiler could play the 0 move and win the
game (a, a′, (n, s,L)). This contracts (i), which states that Duplicator wins that
game. Thus Spoiler must not be able to play the 0 move.

K C P move:
On playing this move, Spoiler chooses some context, call it c1 ∈ C. We shall
show that if Duplicator responds by choosing c′1 = c1 then Duplicator wins.

Applying downward closure to (i), we get

(a, a′, (n, s − 1,L)) ∈ DWD. (5.6)

Applying IHr to this, we know that for all choices of context c̄ ∈ C,

(c̄(a), c̄(a′), (n, s − 1,L)) ∈ DWD. (5.7)
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In particular, we may choose c̄ = c1 ◦ d, so

(c1(d(a)), c1(d(a′)), (n, s − 1,L)) ∈ DWD. (5.8)

By game completeness, we also have

(c1, c1, (n, s − 1,L)) ∈ DWC. (5.9)

Since, assuming Duplicator chooses c′1 = c1, the game continues as either
(c1(d(a)), c1(d(a′)), (n, s− 1,L)) or (c1, c1, (n, s− 1,L)), and we have demonstrated
that Duplicator has a winning strategy in both of these cases, we conclude that
Duplicator wins in the case that Spoiler plays the Cmove.

K(P) move:
Recall, the proposition we wish to show in this case is that, for all d ∈ C,
Duplicator has a winning strategy for the game (d(a), d(a′), (n, s,L)) if Spoiler
starts it by playing the K(P) move. We shall prove this by induction on the
structure of the context, d. To distinguish the induction hypothesis from IHr,
we shall call it IHd, which denotes that the proposition holds for smaller d.

Base case: d = . Then we have d(a) = a and d(a′) = a′ and the result is
immediate from (i).

Inductive case (1): d = κ[d1] for some κ ∈ Σ, d1 ∈ C.
For his move, Spoiler splits d(a) into c1 ∈ C, a1 ∈ D. We consider the possibilities
for c1 and a1, namely

c1 = a1 = d(a) (5.10)
c1 = κ[c2] a1 = a2 (5.11)
c1 = d(a) | a1 = 0 (5.12)
c1 = | d(a) a1 = 0. (5.13)

Case (5.10) is trivial — Spoiler is effectively wasting his move. Specifically,
if Duplicator responds with c′1 = and a′1 = d(a′), game completeness gives
Duplicator a winning strategy if Spoiler decides to continue with the game
(c1, c′1, (n−1, s,L)). Also, IHr part (A) (with the preconditions met by downward
closure) gives Duplicator a winning strategy if Spoiler decides to continue with
the game (d(a), d(a′), (n − 1, s,L)).

Case (5.11): Since d(a) = (κ[d1])(a) = κ[d1(a)] and κ[c2(a2)] = κ[d1(a)], we
know c2(a2) = d1(a). Thus, in the game (d1(a), d1(a′), (n, s,L)), Spoiler may play
the K(P) move, splitting d1(a) as c2 and a2. IHd specifies that Duplicator has an
answer that gives a winning strategy in that case. In particular we can conclude
that d1(a′) = c′2(a′2) such that

(c2, c′2, (n − 1, s,L)) ∈ DWC (5.14)
(a2, a′2, (n − 1, s,L)) ∈ DWD. (5.15)

Since the game in (5.14) is of a lower rank, we can use IHr part (D). This
gives us that

(κ[ ] ◦ c2, κ[ ] ◦ c′2, (n − 1, s,L)) ∈ DWC. (5.16)

Letting a′1 = a′2 and c′1 = κ[c′2], we can see that Duplicator has a winning
strategy with this response, as (5.15) and (5.16) are the same as

(c1, c′1, (n − 1, s,L)) ∈ DWC (5.17)
(a1, a′1, (n − 1, s,L)) ∈ DWD. (5.18)
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Cases (5.12) and (5.13): In each of these cases, we shall show that the
response c′1 = d(a′) | , a′1 = 0 (or, symmetrically, c′1 = | d(a′), a′1 = 0) is a winning
one for Duplicator. Indeed, if Spoiler chooses to continue the game on the
data-structure in the split, we know immediately by game completeness that

(a1, a′1, (n − 1, s,L)) ∈ DWD. (5.19)

We apply downward closure on (i) to get the precondition necessary to
make use of IHr part (A):

(d(a), d(a′), (n − 1, s,L)) ∈ DWD. (5.20)

With this, we can make use of IHr parts (B) and (C) to obtain

(d(a) | , d(a′) | , (n − 1, s,L)) ∈ DWC and (5.21)
( | d(a), | d(a′), (n − 1, s,L)) ∈ DWC (5.22)

as necessary. These are each the remaining possibility for the game to continue
(Spoiler choosing to continue with the context) and we have now demonstrated
that Duplicator has a winning strategy, so Duplicator wins in this event.

Inductive case (2): d = a1 | d1, with a1 ∈ D and d1 ∈ C. In particular, we
assume that a1 = κ[a2] for some κ ∈ Σ, a2 ∈ D. This is a reasonable assumption,
as associativity of the ‘ | ’ operator permits us to take the left-most branch of the
context and be left with a smaller context. Here, IHd tells us that Duplicator
has a winning strategy if Spoiler begins the game (d1(a), d1(a′), (n, s,L)) with the
K(P) move.

We shall consider the ways in which Spoiler may choose to spilt d(a) =
κ[a2] | d1(a) into c1 and a3, with d(a) = c1(a3). These are:

c1 = c2 | d1(a) c2(a3) = a1 (5.23)
c1 = a1 | c2 c2(a3) = d1(a) (5.24)
c1 = | a4 a3 = a1 | a5 d1(a) = a5 | a4 (5.25)

In (5.23) we shall show that, if Duplicator responds with c′1 = c2 | d1(a′), a3,
he has a winning strategy. By downward closure on (i) and IHr part (A) we
know that

(d1(a), d1(a′), (n − 1, s,L)) ∈ DWD. (5.26)

Using this, we can apply IHr part (B) to deduce that

(c2 | d1(a), c2 | d1(a′), (n − 1, s,L)) ∈ DWC. (5.27)

Completeness of games gives the other required result, that is

(a3, a3, (n − 1, s,L)) ∈ DWD (5.28)

proving that this gives a winning strategy for Duplicator.
In (5.24), we notice that IHd provides Duplicator with a c′2 and a′3 such that

c′2(a′3) = d1(a)′ (5.29)
(c2, c′2, (n − 1, s,L)) ∈ DWC (5.30)
(a3, a′3, (n − 1, s,L)) ∈ DWD. (5.31)
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We can apply IHr part (D) to (5.30), to deduce

((a1 | ) ◦ c2, (a1 | ) ◦ c′2, (n − 1, s,L)) ∈ DWC. (5.32)

Together, (5.31) and (5.32) show that the response of a1 | c′2, a′3 gives Duplicator
a winning strategy.

In (5.25), we notice that IHd provides Duplicator with a c′1 and a′5 such that

c′1(a′5) = d1(a)′ (5.33)
( | a4, c′1, (n − 1, s,L)) ∈ DWC (5.34)

(a5, a′5, (n − 1, s,L)) ∈ DWD. (5.35)

This is not immediately sufficient, since we are not assured that c′1(a1 | a′5) =
a1 | d1(a′). We shall see that, for a large enough rank, we can ensure this
condition. For smaller ranks, we shall take a more direct approach to finding
Duplicator a winning strategy.

To prove the result, we shall look at cases of the possible value of n. In
order to be playing the K(P) move we know that n > 0. Since Spoiler cannot
win immediately with the K(P) move, we can see that any split is a winning
strategy for Duplicator if n = 1.

In the case where n = 2, we need to show that Duplicator has a response
such that the data-structures cannot be discriminated between with the 0 move
and the contexts cannot be discriminated between with either of the I or u[K]
moves. We shall show that either the response ( | d1(a′), a1) or ( , a1 | d1(a′)) is a
winning one for Duplicator. That is, either

( | a4, | d1(a′), (n − 1, s,L)) ∈ DWC and (5.36)
(a1 | a5, a1, (n − 1, s,L)) ∈ DWD, or (5.37)

( | a4, , (n − 1, s,L)) ∈ DWC and (5.38)
(a1 | a5, a1 | d1(a′), (n − 1, s,L)) ∈ DWD. (5.39)

We already know that Spoiler’s choice of data-structure (a1 | a5) is not 0, and
a1 and a1 | d1(a′) are also not 0, so the 0 move cannot be used to discriminate.

If Spoiler picks as his context , the second response pair, where Duplicator
replies with , is a winning one for Duplicator.

If Spoiler does not pick the context , then the first pair will be a winning
response for Duplicator, since neither the I move nor the u[K] move can be
applied to let Spoiler win.

In the case where n ≥ 3, we can consider how a game on (5.34) would unfold.
In particular, Spoiler could play the K | P move, so we know that c′1 = c′2 | a

′

4 for
some c′2 ∈ C, a′4 ∈ Dwith

( , c′2, (n − 2, s,L)) ∈ DWC (5.40)
(a4, a′4, (n − 2, s,L)) ∈ DWD. (5.41)

Since n ≥ 3, we know by (5.40) that c′2 = , so c′1 = | a′4. This shows that there
is a splitting of d(a′) into c′1 = | a′4 and a′3 = a1 | a′5. Further, we wish to show

(c1, c′1, (n − 1, s,L)) ∈ DWC (5.42)
(a3, a′3, (n − 1, s,L)) ∈ DWD. (5.43)
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Note that we have (5.42) already, since this is just (5.34).
We can apply IHr part (A) to (5.35) to give

((a1 | )(a5), (a1 | )(a′5), (n − 1, s,L)) ∈ DWD, (5.44)

which is just (5.43) as required.
Inductive case (3): d = d1 | a1, with a1 ∈ D and d1 ∈ C. This case is symmetric

to case (2), hence the reasoning is identical and so omitted here.
Cases (1), (2) and (3) and the base case cover all possible inductive construc-

tions for the context d, and we have proven each of them. Therefore, Duplicator
has a winning strategy whenever Spoiler starts with the K(P) move.

P | P move:
Again, we reason by induction on the structure of the context d, calling the
inductive hypothesis ‘IHd’.

Base case: d = . As before, this case is trivial, as the result is exactly the
assumption (i).

Inductive case (1): d = κ[d1]. This case is also trivial, as Spoiler must split
d(a) into 0 and d(a) (in some order). Therefore, responding with 0 and d(a′) (in
the same order) gives Duplicator a winning strategy by downward closure on
(i) and IHr part (A).

Inductive case (2): d = a1 | d1, for some a1 ∈ D, d1 ∈ C. Consider the
possibilities for Spoiler to split d(a) = a1 | d1(a) into a2 and a3, which are

a1 = a2 | a4 a3 = a4 | d1(a) (5.45)
a2 = a1 | a4 d1(a) = a4 | a3. (5.46)

In (5.45), we show that Duplicator has a winning strategy by responding
with a′2 = a2 and a′3 = a4 | d1(a′). Indeed, by game completeness we know that

(a2, a2, (n − 1, s,L)) ∈ DWD. (5.47)

We apply downward closure to (i) and use IHr part (A) to get

((a4 | d1)(a), (a4 | d1)(a′), (n − 1, s,L)) ∈ DWD. (5.48)

The above assert that the choices for Duplicator give a winning strategy,
whichever way Spoiler chooses to continue the game.

In (5.46), we use that by IHd, d1(a′) = a′4 | a
′

3 such that

(a4, a′4, (n − 1, s,L)) ∈ DWD (5.49)
(a3, a′3, (n − 1, s,L)) ∈ DWD. (5.50)

Using (5.49) with IHr part (A), we get

((a1 | )(a4), (a1 | )(a′4), (n − 1, s,L)) ∈ DWD. (5.51)

Together, (5.51) and (5.50) show that, if Duplicator responds with a′2 = a1 | a′4
and a′3, there is a winning strategy.

Inductive case (3): d = d1 | a1, for some a1 ∈ D, d1 ∈ C. Once again, this case
is symmetric to case (2), so the proof is omitted.

The above inductive reasoning proves by induction that Duplicator has a
winning strategy when Spoiler plays the P | P move.
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Further, we have now looked at all the game moves that apply to case (A).

(B): (d | a, d | a′, (n, s,L)) ∈ DWC. (Context moves apply.)
I move:

If Spoiler were able to play the I move, d | a = . Therefore, d = and a = 0.
By the assumption (i), we conclude that a′ = 0 also. Thus d | a′ = and Spoiler
would not be able to play this move after all.

P B P move:
For this move, Spoiler picks some a1 ∈ D to play with. We shall demonstrate
that if Duplicator chooses a′1 = a1 then he has a winning strategy.

If Spoiler decided to continue the game on a1 and a′1, game completeness
automatically gives Duplicator a winning strategy, that is

(a1, a′1, (n − 1, s,L)) ∈ DWD. (5.52)

Spoiler may also continue the game on (d | a)(a1) = d(a1) | a and (d | a′)(a1) =
d(a1) | a′. In this event, applying downward closure to (i) and IHr part (A) we
get

((d(a1) | )(a), (d(a1) | )(a′), (n − 1, s,L)) ∈ DWD. (5.53)

Thus, Duplicator has a winning strategy in this case also.
u[K] move:

In order for Spoiler to play this move, it must be the case that d | a = κ[d1] for
some κ ∈ L, d1 ∈ C. This implies that a = 0 and d = κ[d1]. If a = 0, then the
assumption (i), by considering the 0 move, gives that a′ = 0 also.

K | P move:
Consider the ways that Spoiler can split d | a into c1 ∈ C and a1 ∈ D, which are:

d = c1 | a2 a1 = a2 | a (5.54)
c1 = d | a2 a = a2 | a1 (5.55)

In the case of (5.54), we shall show that the response c′1 = c1, a′1 = a2 | a′ gives
Duplicator a winning strategy. By game completeness

(c1, c′1, (n − 1, s,L)) ∈ DWC. (5.56)

By downward closure on (i) and applying IHr part (A) we also have

((a2 | )(a), (a − 2 | )(a′), (n − 1, s,L)) ∈ DWD. (5.57)

The deductions (5.56) and (5.57) establish that whichever way Spoiler chooses
to continue this game, Duplicator has a winning strategy.

In the case of (5.55), we deduce from (i), by applying the P | P move, that
a′ = a′2 | a

′

1 such that

(a2, a′2, (n − 1, s,L)) ∈ DWD (5.58)
(a1, a′1, (n − 1, s,L)) ∈ DWD. (5.59)

We can then apply IHr part (B) with (5.58) to give that

(d | a2, d | a′2, (n − 1, s,L)) ∈ DWC. (5.60)
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The deduction (5.59) and (5.60) establish that, if Duplicator responds with
c1 = d | a′2 and a′1, then whichever way Spoiler chooses to continue this game,
Duplicator has a winning strategy.

P | K move:
Spoiler must split d | a into a1 and d1 = d2 | a such that d = a1 | d1. If Duplicator
responds with a′1 = a1 and d′1 = d2 | a′, then by downward closure on (i) and IHr
part (B) we have

(d2 | a, d2 | a′, (n − 1, s,L)) ∈ DWC. (5.61)

Game completeness also gives

(a1, a′1, (n − 1, s,L)) ∈ DWD (5.62)

which proves that this response gives a winning strategy for Duplicator.
We have now looked at all the game moves that apply to case (B).

(C): (a | d, a′ | d, (n, s,L)) ∈ DWC. (Context moves apply.) This is symmetric
to case (B), so the proof is omitted here.

(D): (d ◦ c, d ◦ c′, (n, s,L)) ∈ DWC. (Context moves apply.)
I move:

If Spoiler were able to play this move, that would mean that d ◦ c = , so d =
and c = . By (ii), applying the I move, we conclude that c′ = also, and Spoiler
would not have been able to play this move after all.

P B P move:
For this move, Spoiler picks some a1 ∈ D to play with. By applying the P B P
move on (ii) we deduce that there is an a′1 ∈ D such that

(a1, a′1, (n − 1, s,L)) ∈ DWD (5.63)
(c(a1), c′(a′1), (n − 1, s,L)) ∈ DWD. (5.64)

If we then apply IHr part (A) with (5.64) we get

(d(c(a1)), d(c′(a′1)), (n − 1, s,L)) ∈ DWD. (5.65)

Between them, (5.63) and (5.65) prove that the response of a′1 and (d ◦ c′)(a′1)
gives Duplicator a winning strategy.

u[K] move:
If Spoiler is to play this move, then there are two cases for the context d (since
d(c) = κ[c1] for some κ ∈ L, c1 ∈ C): either d = or d = κ[d1] for some d1 ∈ C.

If d = then the result follows immediately from (ii).
If d = κ[d1] then Spoiler does not win in this move and, by applying down-

ward closure to (ii) and applying IHr part (D) we conclude that

(d1 ◦ c, d1 ◦ c′, (n − 1, s,L)) ∈ DWC. (5.66)

This is enough to conclude that Duplicator has a winning strategy.
K | P move:

We shall once again make use of induction on the structure of the context d.
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Base case: d = . The result is immediate.
Inductive case (1): d = κ[d1] for some κ ∈ Σ, d1 ∈ C. In this case, Spoiler may

only choose the context κ[d1] ◦ c and data-structure 0. By applying downward
closure to (ii) and using IHr, we get

(d ◦ c, d ◦ c′, (n − 1, s,L)) ∈ DWC. (5.67)

Also, plainly
(0, 0, (n − 1, s,L)) ∈ DWD. (5.68)

(5.67) and (5.68) give that Duplicator has a winning strategy with the re-
sponse d ◦ c′, 0.

Inductive case (2): d = d1 | a1 for some d1 ∈ C, a1 ∈ D. Consider the ways
Spoiler may spit d ◦ c = (d1 ◦ c) | a1 into c1 and a2, which are

c1 = (d1 ◦ c) | a3 a1 = a3 | a2 (5.69)
d1 ◦ c = c1 | a3 a2 = a3 | a1 (5.70)

In the case of (5.69), we will show that the response c′1 = (d1 ◦ c′) | a3, a′2 = a2
gives Duplicator a winning strategy. By applying downward closure to (ii) and
using IHr we get that

((d1 | a3) ◦ c, (d1 | a3) ◦ c′, (n − 1, s,L)) ∈ DWC. (5.71)

Further, by game completeness

(a2, a′2, (n − 1, s,L)) ∈ DWD. (5.72)

Together, (5.71) and (5.72) prove that the response does indeed give a winning
strategy for Duplicator.

In the case of (5.70), we know by IHd that d1 ◦ c′ = c′1 | a
′

3 for c′1 ∈ C, a′3 ∈ D
such that

(c1, c′1, (n − 1, s,L)) ∈ DWC (5.73)
(a3, a′3, (n − 1, s,L)) ∈ DWD. (5.74)

We can then apply IHr part (A) with (5.74) to deduce

(( | a1)(a3), ( | a1)(a′3), (n − 1, s,L)) ∈ DWC. (5.75)

Together, (5.73) and (5.75) prove that the response c′1, a2 = a′3 | a1 gives Duplicator
a winning strategy.

Inductive case (3): d = a1 | d1 for some d1 ∈ C, a1 ∈ D. In this case, the only
way that Spoiler can split d ◦ c = a1 | (d1 ◦ c) is into c1 = a1 | c2 and a2 such that
d1 ◦ c = c2 | a2.

By IHd we know that d1 ◦ c′ = c′2 | a
′

2 such that

(c2, c′2, (n − 1, s,L)) ∈ DWC (5.76)
(a2, a′2, (n − 1, s,L)) ∈ DWD. (5.77)

We now apply IHr part (D) with (5.76) and deduce that

((a1 | ) ◦ c2, (a1 | ) ◦ c′2, (n − 1, s,L)) ∈ DWC. (5.78)
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Together, (5.77) and (5.78) give that, if he responds with c′1 = a1 | c′2 and a′2,
Duplicator has a winning strategy in this case.

P | K move:
This case is just symmetric to the K | P case, and so the reasoning is omitted.

�

The next corollary states that we can eliminate adjunct moves and Spoiler
will still have a winning strategy.

Corollary. If r = (n, s,L) and r′ = (n, s+s′,L) for some s′ ∈N, then, for all a, a′ ∈ D,
c, c′ ∈ C:

(a, a′, r) ∈ DWD =⇒ (a, a′, r′) ∈ DWD (5.79)
(c, c′, r) ∈ DWC =⇒ (c, c′, r′) ∈ DWC (5.80)

(a, a′, r′) ∈ SWD =⇒ (a, a′, r) ∈ SWD (5.81)
(c, c′, r′) ∈ SWC =⇒ (c, c′, r) ∈ SWC (5.82)

Proof. We prove (5.79) and (5.80) by induction on the rank r′ and cases on the
first move that Spoiler plays in the game (a, a′, r′) or (c, c′, r′). Parts (5.81) and
(5.82) follow immediately.

If Spoiler’s move allows him to win, then he could have played precisely
the same move on (a, a′, r) (or (c, c′, r)). Thus Spoiler cannot win immediately in
the new game.

If Spoiler plays the K C P move, then we have by induction that

(a, a′, (n, s + s′ − 1,L)) ∈ DWD. (5.83)

Spoiler selects some context c1. By theorem 5.2, we know that

(c1(a), c1(a′), (n, s + s′ − 1,L)) ∈ DWD. (5.84)

By game completeness, we know that

(c1, c1, (n, s + s′ − 1,L)) ∈ DWC. (5.85)

Therefore, if Duplicator responds with the same context, c1, he has a winning
strategy however the game continues.

In any other case, the game continues with some other pair of trees or
contexts and a smaller rank. Spoiler would be able to play that same move on
the original game, and so Duplicator has a winning strategy in the proceeding
game with rank (n − 1, s,L). By induction, Duplicator has a winning strategy
for that same game with rank (n − 1, s + s′,L) and so has a winning strategy
overall. �

We are now in a position to show the final corollary, that the ‘C’ adjunct can
be eliminated from the logic.

Corollary. If r = (n, 0,L) and r′ = (n, s,L), then any formula of rank r′ is equivalent
to a formula of rank r.
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Proof. Suppose P is a formula of rank r′, and let T = {a : a |= P}. By game
soundness, if a ∈ T and a′ < T then (a, a′, r′) ∈ SWD, and so, by the above
corollary, (a, a′, r) ∈ SWD. Hence, by game completeness, there is a formula
Pa,a′ of rank r that discriminates between a and a′. We then apply lemma 4.3
do see that there is a formula P′ of rank r which defines the set T . Thus P′ is
equivalent to P.

The argument in the case of contexts is just the same. �

5.4 Comments on the Proof

It is probably not clear, without examination of the proof, why theorem 5.2
includes parts (B), (C) and (D), since these are not used in the corollaries proving
adjunct eliminability.

It is clear from examination of the proof of theorem 5.2 that the most com-
plicated case necessary of consideration is that when, in the game in part (A),
Spoiler plays the K(P) move. This is since Spoiler may split d(a) in a highly
arbitrary manner, giving rise to numerous cases for which we must prove

Note that we have also made use of a derived P | P move in the proof. The
reason for including this is to simplify finding a response for Duplicator in the
case of (5.55). This is at the expense of introducing an additional case in the
proof of part (i). Instead of doing this, we could have made use of the method
used in (5.25).

5.5 Simplifications to the Proof

We now present a lemma, which permits a simplification to the proof of the-
orem 5.2 by effectively rendering consideration of the adjunct move K C P
redundant. We did not use this lemma in the proof that we gave, as the K C P
case is relatively short and provides a more direct proof. Variations on the
lemma, however, should be even more useful when more than one move type
is to be eliminated, for instance, if we were attempting to eliminate both the
adjuncts of application. We shall later consider the question of adjunct elim-
ination in Context Logic extended with composition and its adjuncts. In any
proof of this, being able to ignore cases of all four adjunct connectives would
certainly permit a more compact presentation.

Lemma 5.3. If for ranks (n, 0,L) and all a, a′ ∈ D

(a, a′, (n, 0,L)) ∈ DWD (5.86)

implies that for all d ∈ C

(d(a), d(a′), (n, 0,L)) ∈ DWD (5.87)

then for all ranks (n, s,L) and all a, a′ ∈ D

(a, a′, (n, 0,L)) ∈ DWD (5.88)

implies that for all d ∈ C

(d(a), d(a′), (n, s,L)) ∈ DWD. (5.89)
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Proof. By induction on s.
If s = 0 the result is immediate.
If s > 0 then consider how the game (d(a), d(a′), (n, s,L)) would be played,

with Spoiler attempting to win. When Spoiler plays a move that is not KCP, we
shall have Duplicator’s strategy be to make the same response as he would for
the game (d(a), d(a′), (n, s − 1,L)). The game continues this way, and if Spoiler
never plays the K C P move, Duplicator will obviously win, since Spoiler may
make no other move than those covered in the game we know that Duplicator
has a winning strategy for. If Spoiler eventually decides to play the KCP move,
the game will be of the form

(a1, a′1, (n
′, s,L)), (5.90)

with n′ ≤ n, and for Duplicator to have a winning strategy, it is sufficient to
show that, for any d1 ∈ C (which Spoiler may choose),

(d1, d1, (n′, s − 1,L)) ∈ DWC (5.91)
(d1(a1), d1(a′1), (n′, s − 1,L)) ∈ DWD. (5.92)

Now (5.91) holds by game completeness. (5.92) holds by induction, after we
apply downward closure on (5.88). Thus by responding with the same context,
d1, Duplicator has a winning strategy.

�

Variations on this lemma can also be used to simplify other games-based
adjunct elimination results, and henceforth we shall generally take advantage
of the simplification such lemmas afford, namely ignoring adjunct cases in
proofs as appropriate.
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6 Adjunct Elimination in Context Logic for Trees:
Evaluation

We shall now take a critical view of the work we have presented on adjunct
elimination in Context Logic for trees, and see what work remains to be done,
partially as a consequence of our results.

6.1 General Notes

The counterexample presented in the previous section described a particular
context formula that is not expressible without the ‘B’ adjunct. We have not,
however, demonstrated the existence of any data formula that is not expressible
without ‘B’, and so the question remains as to whether such a formula exists.

One might consider this to be unlikely, since the issue we exploited in our
construction was that certain differences between contexts cannot be examined
using the non-adjunct context formulae. When considering data-structures,
however, the K(P) connective would seem to permit any given substructure
to be examined in order to notice differences. On the other hand, one might
suspect that such a formula may well exist, on account of the subtleties involved
in finding differences between structures given the adjuncts. Such subtleties are
a problem we shall also see later in discussions considering whether Context
Logic with context composition may admit adjunct elimination.

Proving that no such counterexample exists is likely to be difficult. It would
require a sophisticated adaption to the games methodology, or some other
manipulation on the logic, in order to render the proof technique we have used
here suitable for solving this problem.

It does, however, remain an interesting question, as proving the result one
way or the other will give us greater insight into the expressivity of the logic
without adjuncts.

6.2 Applicability to Other Models

Since the definition of Context Logic is by no means specific to the tree model,
a significant question is, “In which models is adjunct elimination possible?”.
Of particular interest are other forms of data-structure, such as unordered trees
and directed acyclic graphs. Context Logic’s ability to reason about data on the
level of data-structures is a key motivating feature for its use, and determining
adjunct elimination results for these other models will also be interesting.

6.2.1 Sequences

One data-structure of interest is sequences over some alphabet, Σ. A grammar
for sequences and sequence-contexts might be:

sequences d ::= 0
∣∣∣ a ∈ Σ ∣∣∣ d · d (6.1)

contexts s ::=
∣∣∣ d · c ∣∣∣ c · d (6.2)

We take the ‘·’ operator to be associative but (obviously) not commutative.
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6.3 Context Logic with Context Composition

It is clear that sequences are merely a special case of trees: specifically, the
flat trees. Knowing this, we can expect to apply the elimination result for the
‘C’ adjunct almost directly to Context Logic for sequences.

We might also expect that the ‘B’ adjunct can be eliminated in the sequence
case, especially since our counterexample and reasoning for the tree case is
obviously no longer applicable.

6.2.2 Unordered Trees

Another interesting model for Context Logic is unordered trees: when we take
the ‘ | ’ operator to be commutative. This is the model that has been used in the
proofs regarding adjunct elimination in Ambient Logic.

Clearly, since we do not consider the ‘ | ’ connective in the construction or
proof of the counterexample to elimination of ‘B’, the counterexample will hold
just as well in the case of unordered trees. Within the proof of elimination of
’C’, we did make assumptions about how trees and contexts can be split —
assumptions which do not hold in the unordered case. However, we expect
that the cases requiring consideration to adapt the proof to unordered trees will
be sufficiently similar to those for the ordered case that such an adaptation will
not be difficult.

6.3 Context Logic with Context Composition

6.3.1 Motivation

We have seen that 0B (True(β[0])) is a counterexample to the elimination of the
‘B’ adjunct in Context Logic for trees, however, it is apparent that this coun-
terexample does have an equivalent adjunct-free formula if the logic is extended
with a context composition connective. This is since the counterexample relies
on being unable to discriminate two contexts if the difference is at a sufficient
depth. With context composition, it is possible to break the context up at an
arbitrary depth.

With the composition connective, K ◦ K, it seems natural to introduce the
corresponding adjunct connectives, also: K� K and K( K. Indeed, extending
Context Logic with context composition has been investigated previously and
found not to increase the expressive power of data formulae.

We note that one of the composition adjuncts was implicitly eliminated as
a consequence of the proof of elimination of K C P previously. Thus we expect
that a theorem that eliminates K B P will also eliminate the remaining adjunct
of K ◦ K.

6.3.2 Issues with proof

It is not currently known whether a general adjunct elimination result holds
for this logic with composition, but we shall highlight some of the problems
encountered in an attempt to prove and refute such a claim. Much of the
subtlety of the problem is generated by the cases in which a composed tree c(a)
may be split into c1 and a1 with c(a) = c1(a1). There are four essentially different
types of splitting, which are illustrated by figures 1, 2, 3, 4 and 5.
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Figure 1: Context c and data a

Figure 2: Splitting type (1)

Figure 3: Splitting type (2)

Figure 4: Splitting type (3)
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Figure 5: Splitting type (4)

For the purposes of this section, we shall express a game rank as a tuple
(r, s,L) where r is the number of non-adjunct moves (0, K(P), I, K ◦ K, u[K]
and K | K) that may be played, s is the number of adjunct moves that may be
played, andL is the finite set of labels that may be used. Additionally, we may
abbreviate the rank (r, 0,L) as simply r, where this is unambiguous.

The following conjecture, which we may wish to prove, would permit elim-
ination of all of the adjuncts in the logic:

Conjecture 6.1. For all r ∈N, finite L ⊆ Σ. If, for c, c′, d, d′ ∈ C, a, a′ ∈ D,

(c, c′, (r, 0,L)) ∈ DWC (6.3)
(d, d′, (r, 0,L)) ∈ DWC (6.4)
(a, a′, (r, 0,L)) ∈ DWD (6.5)

then

(c(a), c′(a′), (r, 0,L)) ∈ DWD (6.6)
(c ◦ d, c′ ◦ d′, (r, 0,L)) ∈ DWC. (6.7)

We shall look at how an attempt to prove this becomes problematic. In
particular, we shall suppose the proof will be by induction on the rank and by
cases on Spoiler’s choice of move in the games in (6.6) and (6.7), and examine
the K(P) move case in the game (6.6).

To play the K(P) move, Spoiler splits c(a) into a context, c1, and data-
structure, a1, such that c(a) = c1(a1). For practical purposes, there are four
different ways in which this can be done, as illustrated in figures (1, 2, 3, 4,
5). We shall consider each of these cases individually. In each case, we wish
to show that Duplicator has a corresponding splitting c′(a′) = c′1(a′1) such that
(c1, c′1, r − 1) ∈ DWC and (a1, a′1, r − 1) ∈ DWD.

Splitting type (1): In this case, a = c2(a1) and c1 = c ◦ c2. By (6.5), we know
that a′ = c′2(a′1) such that (c2, c′2, kr − 1) ∈ DWC and (a1, a′1, kr − 1) ∈ DWD. (This
is by playing the K(P) move on that game.)

By downward closure, (c, c′, r − 1) ∈ DWC. Thus, by induction, (6.7) gives
(c ◦ c2, c′ ◦ c′2, r − 1) ∈ DWC. Thus we conclude that the response c′1 = c′ ◦ c′2, a′1
would be a winning one for Duplicator.

Splitting type (2): In this case, c = c1 ◦ c2 and a1 = c2(a). By (6.3), we know
that c′ = c′1 ◦ c′2 such that (c1, c′1, r − 1) ∈ DWC and (c2, c′2, r − 1) ∈ DWC. (This is
by playing the K ◦ K move on that game.)
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By downward closure, (a, a′, r − 1) ∈ DWD. Thus, by induction, (6.6) gives
(c2(a), c′2(a′), r − 1) ∈ DWC. Thus we conclude that the response c′1, a′1 = c′2(a′) is
a winning one for Duplicator.

Splitting Type (4): In this case, c = c2◦ (a2 | ), a = ( | a4)(a3), c1 = c2◦ ( | a4) and
a1 = (a2 | )(a3). By (6.3) c′ = c′2◦c′3 with (c2, c′2, r−1) ∈ DWC and ((a2 | ), c′3, r−1) ∈
DWC. By (6.5) a′ = c′4(a′3) with (( | a4), c′4, r− 1) ∈ DWC and (a3, a′3, r− 1) ∈ DWD.

We expect Duplicator’s response to be c′1 = c′2 ◦ c′3, a′1 = c′4(a′3), however, in
order to do so we would need to demonstrate that c′(a′) = c′1(a′1). In particular,
we can do this in the case that r ≥ 3. Specifically, we can demonstrate that
c′3 = a′2 | and c′4 = | a′4. Applying the P | K move to the game ((a2 | ), c′3, r − 1),
c′3 = a′2 | c

′

5 where ( , c′5, r − 2) ∈ DWC. It follows then that c′5 = , so c′3 = a′2 | .
Likewise, playing the K | P move on the game (( | a4), c′4, r − 1) we get that

c′4 = c′6 | a
′

4 with ( , c′6, r − 1) ∈ DWC. Thus c′6 = and so c′4 = | a′4.
Assuming that the result can be shown for the cases where r < 3, we can

apply induction to deduce that (c2 ◦ c3, c′2 ◦ c′3, r− 1) ∈ DWC and (c4(a3), c′4(a′3), r−
1) ∈ DWD. We omit this check, as it is likely similar to a case in the proof of C
elimination previously.

Splitting type (3): In this case, c = c2 ◦ (c3(a1) | c4) and c1 = c2 ◦ (c3 | c4(a)).
There is also a distinct but symmetric case where c = c2 ◦ (c4 | c3(a1)), however,
the proof in this case is the same upto symmetry, so we shall only consider the
first case.

This is the case where particularly problematic issues arise, specifically,
concerning establishing the existence of a c′1 and a′1 with the properties that

(a2 ◦ (c3 | c4(a)), c′1, r − 1) ∈ DWC (6.8)
(a1, a′1, r − 1) ∈ DWD (6.9)

The most obvious method is to try to construct an answering c′1 = c′2 ◦
(c′3 | c

′

4(a′)) and a′1 with c′ = c′2 ◦ (c′3(a′1) | c′4). This is done by splitting up c′ in a
way to match c, then applying the inductive hypothesis to put the parts back
together.

This issue with this is that, in order to apply the inductive hypothesis as we
have stated it to achieve (6.8), we require the parts we shall be composing to
be indistinguishable from their counterparts in a game of rank r− 1. However,
there is no single game move which can produce these components (c′2,c′3, c′4
and a′1) to match.

To attack the problem from another angle, if we can produce the components
which correspond to Spoiler’s counterparts in some fixed number of moves. If
we modify the assumptions (6.5), (6.3) and (6.4) to use a rank greater than r,
given by some function f (r). By downward closure of games, we may assume
that f is monotone increasing. (Suppose for r > r′ that f (r) < f (r′), then the
assumptions for r′ imply the assumptions for r (by downward closure), which
in turn imply the results for r (by the theorem, if true), which further implies
the results for r′ (by downward closure). Thus we could have taken f (r′) = f (r)
instead.)

If we are to prove it in this manner, we’d have to be able to assert that
f (r − 1) < f (r), since we require to establish that (c2, c′2, f (r − 1)) ∈ DWC and we
would have to do so by playing a move on the game (c, c′, f (r)) ∈ DWC (and
applying downward closure as appropriate). However, we note that we would
have to apply the inductive hypothesis at least twice in order to recombine the

44



6.3 Context Logic with Context Composition

components. Thus, we also require f ( f (r − 1)) < f (r). Since f is monotone, this
implies f (r− 1) < r. Since f is a function on the natural numbers, we are forced
to conclude that f (r) = r for all r.

A further angle is to consider the addition of a “super” move to the games,
which is capable of decomposing c′1 into the appropriate components in a single
move. This would enable the particular case to be resolved, however, since we
suppose that the inductive hypothesis may be applied more than once within
that proof, it would be necessary to include the super move as a possible case in
the proof. This in turn implies that Duplicator would have to be able to answer
a complicated splitting of c(a), with many possible cases. It is likely that yet
more super moves would be needed for Duplicator to construct this response,
and so on. Therefore, a super move does not appear to offer a solution, but
merely obfuscate the essential and remaining issue.

There does, of course, remain the possibility that the conjecture is false.
This does not necessarily imply that adjunct elimination fails, although a coun-
terexample to the proof would likely give considerable insight into how a
counterexample to adjunct elimination may be constructed.

6.3.3 Multi-holed Contexts

If a counterexample arises from the particular splitting considered here, it is
likely that it can be circumvented by introducing contexts with more than one
hole. Two-holed contexts could allow the splitting of a′1 from c′ to produce
a two-holed context into which a′ could be inserted to produce a c′1 that is
indistinguishable from c1 in r − 1 game moves. Due to constraints on time and
resources, consideration of multi-holed contexts is beyond the scope of this
project.
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7 Conclusions and Future Work

The purpose of this project has been to investigate to what extent adjuncts may
be eliminated in Context Logic. A key goal was to show (or refute) that adjuncts
do not add expressive power to Context Logic for Trees.

We have discussed previous and contemporary related work, and given the
key background definitions for Context Logic and Ehrenfeucht-Fraı̈ssé games.
We explored various considerations relating to the elimination of adjuncts in
general cases, particularly providing specific counterexamples in order build
our intuition for adjunct elimination.

We then concentrated our attentions on adjunct elimination in Context Logic
for Trees. We provided an explicit counterexample to elimination of the ‘B’
adjunct and a proof of elimination of the ‘C’ adjunct, satisfying the key goal of
the project. We then evaluated these results, looking, for instance, at how we
might extend context logic in order that ‘B’ would become eliminable.

While we have answered some interesting and significant questions in this
project, we have raised new questions, and indicated what other work remains
to be done in this are. For instance:

• Can adjuncts be eliminated in Context Logic for Trees when

– we add context composition?

– we use multi-holed contexts?

– we concern ourselves only with elimination within data formulae?

• Can elimination results be applied to other types of data-structure, or
generalised to an abstract data-structure?

• Parametric inexpressivity results for the elimination of adjuncts would
complement the work in this project.

• Is it possible to define model conditions that are satisfied by exactly those
models which admit adjunct elimination?

Continued work on these and related problems will enhance our under-
standing of Context Logic, and help to build a sound theoretical framework
underpinning the use of the logic in Computer Science.
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