
Abstract Reasoning for Concurrent Indexes
Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, Mark Wheelhouse

Imperial College London
{pmd09, td202, pg, mjw03}@doc.ic.ac.uk

1. Introduction
Shared-memory concurrency plays an important role in mod-
ern computer systems: for example, in classic file systems and
databases, and the evolving web and multi-core operating systems.
Many of these systems make fundamental use of concurrent in-
dexes. A concurrent index can be viewed as a mapping from key-
values to data (typically pointers), which can be accessed simul-
taneously by many threads calling read/write operations on key-
values. A user typically works with this abstract view of indexes,
rather than with the intricate details of complex implementations.
We could verify such implementations directly [5], but we instead
choose to give a formal abstract specification of concurrent indexes,
and verify that well-known implementations using BLink trees [6]
and hash tables satisfy this specification.

Separation logic has been used to reason about similar sequen-
tial structures [7], but we use an extension called concurrent ab-
stract predicates, recently introduced by Dinsdale-Young and Gard-
ner with Dodds, Parkinson and Vafeiadis [3]. This work enables us
to develop abstract local reasoning about concurrent modules, pro-
viding a ‘fiction of separation’ [4] at the module level which is
not present in the underlying implementation. For example, with
concurrent indexes, we can reason separately about the concurrent
access of partial value-pointer pairs despite the underlying concur-
rent implementation involving a complex, connected data structure
such as a BLink tree.

This work is not a straightforward application of concurrent ab-
stract predicates as introduced in [3]. The concurrent BLink tree
algorithm is maximally fine-grained, allowing programs to con-
currently access the same key-value. The original concurrent ab-
stract predicate technology is not able to specify the equivalent fine-
grained behaviour at the module level. We adapt the approach, al-
lowing fractional permissions on abstract predicates to capture the
fine-grained nature of the implementation, and providing more fine-
grained predicates to specify stronger properties about programs.

2. Specifications
A concurrent index h is a mapping from key-values v to data
pointers p or nothing (null) which can be accessed by multiple
threads at the same time:

h : KeyV alues→ Pointers ∪ {null}
There are three operations which manipulate a concurrent index:

r := SEARCH(h, v) r := INSERT(h, v, p) r := DELETE(h, v)

The search operation returns the pointer mapped by v if it exists in
the index h, or null if it does not. The insert operation tries to insert
a pointer p at the key-value v. If it already exists it returns false and
does nothing, otherwise it extends the mapping and returns true.
The delete operation tries to remove the mapping for key-value v
from the index. If it does not exist in the mapping then it returns
false and does nothing, otherwise it removes the value-pointer pair
from the index and returns true.

We want to give specifications for these operations so that we
may reason about concurrent indexes. For example, given program,

r1 := SEARCH(h, v)
∥∥ r2 := INSERT(h, v, q)

we should be able to prove that if the key-value v is unassigned at
the start of the program, then it will be assigned the pointer q at the

Predicate Permission Rely Guarantee
indef / outdef 1 No actions All actions
indef / outdef i No actions No actions
inins / outins i Only inserts Only inserts
indel / outdel i Only deletes Only deletes

unk i All actions All actions
read All actions No actions

Table 1. Predicates and their interference

end of the program, but we will not know the return value of the
search operation. This is because we do not know if the search will
occur before or after the insert operation.

We define a set of concurrent abstract predicates which express
if there is a mapping to a key-value or not and also describe the
interference that is allowed on this key-value in the shared state.
We provide the following set of abstract predicates parametric on
key-value v and index h:

indef(h, v, p, i) the key-value v is definitely assigned.
outdef(h, v, i) the key-value v is definitely not assigned.
inins(h, v, p, i) the key-value v is assigned and there are no deletions

in the interference environment.
outins(h, v, i) the key-value v might not be assigned and there are

no deletions in the interference environment.
indel(h, v, p, i) the key-value v might be assigned and there are no

insertions in the interference environment.
outdel(h, v, i) the key-value v is not assigned and there are no

insertions in the interference environment.
unk(h, v, i) nothing is known about the key-value v.
read(h, v) nothing is known about the key-value v and the

thread can only search.

The concurrent abstract predicates are extended with permission
fractions i and j, with 0 < i, j ≤ 1, as presented by Boyland [1].
These permissions are used to record the splitting of the predicates.
We use def, ins and del to denote the allowed interference on the
shared state. The def predicates specify that there can only be either
sequential writes or concurrent reads on the shared state. The ins
(or del) predicates specify that there can only be insert (or delete)
and search operations on the shared state. Finally, the unk and read
predicates allow for any kind of operation on the shared state. The
difference is that the read predicate only allows the current thread
to perform searches, whilst the unk predicate allows the current
thread to carry out any operation.

The choice of predicates may, at first, seem somewhat arbitrary,
but in fact these predicates give a complete coverage of all possible
thread and environment interactions. Table 1 shows how our choice
of predicates corresponds to a rely-guarantee way of thinking about
the environment and also how they cover the space of thread inter-
actions. An action is some program effect that modifies the shared
state. A search operation does not modify the shared state and so
has no corresponding actions. Inserts add pointers to the index and
deletes remove pointers from the index. The Rely corresponds to
the actions that can be performed by the program environment (the
other threads running concurrently), whereas the Guarantee corre-
sponds to the actions that can be performed by the current thread.

We provide a system of axioms which allow us to change be-
tween interference environments and split predicate permissions. A

subset of these axioms, sufficient for our examples, is given below:
indef(h, v, p, 1) ⇐⇒ indel(h, v, p, 1)
outdef(h, v, 1) ⇐⇒ outdel(h, v, 1)

indel(h, v, p, i) ∗ indel(h, v, p, j) ⇐⇒ indel(h, v, p, i+ j)
outdel(h, v, i) ∗ outdel(h, v, j) ⇐⇒ outdel(h, v, i+ j)

indef(h, v, p, i) ∗ read(h, v) ⇐⇒ indef(h, v, p, i)
outdef(h, v, i) ∗ read(h, v) ⇐⇒ outdef(h, v, i)

indef(h, v, p, 1) =⇒ unk(h, v, 1)

The first and second axioms show how, when we have full per-
mission (i = 1) on a key-value, we can change how that key-value
is treated. For example here we move from an environment where
all inserts and deletes must occur sequentially, to an environment
where many deletions may occur in parallel. The third and fourth
axioms show how permissions may be split and combined so long
as i + j does not exceed full permission 1. The fifth and sixth ax-
ioms show how a read permission can be split off of any write per-
mission, in this case in an environment where inserts and deletes
are forced to occur sequentially. A read permission does not retain
any information about whether the key-value is assigned in the in-
dex or not. Searches carried out with just a read permission will
return an unknown result, however, we still know that they will not
fault. The final axiom shows how any predicate, with full permis-
sion, can transition to the unknown predicate. This predicate loses
all information about the contents of the index, but still allows for
us to prove safety of a program. Note that once we have moved to
the unknown state, we cannot get back to any other state.

With these predicates, we can now give the specifications of our
index-manipulating operations. We will not give the full specifica-
tions here, but enough to provide an example of our reasoning.{

outdef(h, v, 1)
}
r := INSERT(h, v, p)

{
indef(h, v, p, 1)
∧ r = true

}
{
indel(h, v, p, i)

}
r := DELETE(h, v)

{
outdel(h, v, i) ∧
(r = true ∨ r = false)

}
{
read(h, v)

}
r := SEARCH(h, v)

{
read(h, v) ∧
(r = ∨ r = null)

}
Using these specifications, and common local Hoare reasoning

rules for sequential and parallel programs, we can now present a
proof of the program we gave at the beginning of this section.{

outdef(h, v, 1)
}{

read(h, v) ∗ outdef(h, v, 1)
}{

read(h, v)
}

r1 := SEARCH(h, v){
(read(h, v) ∧ r1 =) ∨
(read(h, v) ∧ r1 = null)

}
∥∥∥∥∥∥∥∥

{
outdef(h, v, 1)

}
r2 := INSERT(h, v, q){

indef(h, v, q, 1)
∧ r2 = true

}
{
(read(h, v) ∧ r1 =) ∨ (read(h, v) ∧ r1 = null)
∗ indef(h, v, q, 1) ∧ r2 = true

}
{
read(h, v) ∗ indef(h, v, q, 1) ∧ (r1 = ∨ r1 = null) ∧ r2 = true

}{
indef(h, v, q, 1) ∧ (r1 = ∨ r1 = null) ∧ r2 = true

}{
indef(h, v, q, 1)

}
We use r = as short hand notation for ∃p.(r = p). The

proof starts with the predicate outdef(h, v, 1) which specifies that
in the index h there is no pointer mapped to by the key-value
v. The def interference environment specifies that that no other
thread is modifying this key-value since the current thread holds
full permission on this key. We can use one of our axioms to turn
this predicate into read(h, v) ∗ outdef(h, v, 1). This allow us to use
the read(h, v) predicate in the left hand thread, which performs
a simple search operation and does not modify the shared state.
This read predicate captures the fact that we do not know the return
value of the search operation as we do not know in which order the
search and insert will execute. With the outdef(h, v, 1) predicate we
can prove the right hand thread in a deterministic way, as we know
that it is the only thread changing the shared state for the key-value
v. Finally, when both threads finish their execution, we can merge
the read(h, v) predicate back into the indef(h, v, q) predicate with

another axiom. We could provide a similar proof for the case where
the key-value v is already assigned before the program begins. In
this case we know the insert would do nothing and the search would
return the original pointer stored in the index.

In a similar way we can provide specifications for other inter-
actions on a concurrent index. For example, if we know that a cer-
tain key-value is assigned in the index and we run two concurrent
deletes on that key-value, whilst we do not know which deletion
will succeed and which will fail, we do know that the key-value
will definitely no longer be assigned after. Permission splitting al-
lows us to pass this knowledge to both threads.{

indef(h, v, p, 1)
}{

indel(h, v, p, 1)
}{

indel(h, v, p, 1/2) ∗ indel(h, v, p, 1/2)
}{

indel(h, v, p, 1/2)
}

r1 := DELETE(h, v){
outdel(h, v, 1/2) ∧
(r1 = true ∨ r1 = false)

}
∥∥∥∥∥∥∥∥

{
indel(h, v, p, 1/2)

}
r2 := DELETE(h, v){

outdel(h, v, 1/2) ∧
(r2 = true ∨ r2 = false)

}
{
outdel(h, v, 1/2) ∧ (r1 = true ∨ r1 = false)
∗ outdel(h, v, p, 1/2) ∧ (r2 = true ∨ r2 = false)

}
{
outdel(h, v, 1) ∧ (r1 = true ∨ r1 = false)
∧ (r2 = true ∨ r2 = false)

}
{
outdel(h, v, 1)

}{
outdef(h, v, 1)

}
We cannot always know the exact state of an index after some

program has run, but we can show that the program is safe. For
example, if we run an insert and delete command on the same key-
value in parallel, we will not know if that key-value is assigned
after, but will know that the program did not fault.{

indef(h, v, p, 1)
}

r1 := DELETE(h, v)
∥∥ r2 := INSERT(h, v, q){

unk(h, v, 1)
}

Our reasoning also scales to more complex programs.{
outdef(h, v, 1)

}
SEARCH(h, v, r)

∥∥∥∥∥∥
INSERT(h, v, p)

SEARCH(h, v)
∥∥ SEARCH(h, v)

DELETE(h, v){
outdef(h, v, 1)

}
In this example we know that they key-value v is definitely unas-

signed at the end of the program. We could also show that whist the
leftmost search has an unknown return value, both of the other two
searches would return the same value p.

Our predicates address all the possible interference which can
be induced on the shared state by the current thread and the envi-
ronment. However, with the specifications presented, once we get
to an unknown state, as in our third example, we are stuck there.
This is a very strong assumption. It says that if there is a race con-
dition where we cannot determine the contents of the index for a
key-value, we can only prove safety for the program from this point
onward, and we cannot prove what the index contents at that key
might be. However, we should sometimes be able to recover from
an unknown state because we can work out what the contents will
be. For example, if all threads end with a deletion of a certain key-
value, then we can be sure that this key-value will not be assigned
in the index at the end of the program.

We can extend the unknown predicate from our system with
tags such as unkins(h, v, i) and unkdel(h, v, i) which record the last
write operation carried out by the thread. We use this knowledge to
recover from an unknown state to a known state once we have full
permission on that key-value again. In particular we add axioms to
our reasoning system which capture this behaviour, such as:

unkdel(h, v, 1) =⇒ outdef(h, v, 1)

The aim of our specifications is that if you can intuitively deduce a
property about a program then you should be able to formally prove
that property with our system of predicates.

3. Implementations
Concurrent indexes are widely used in databases and filesystems.
As such, there are many different index implementations, such as
BLink trees and hash tables. One of the biggest advantages of using
the concurrent abstract predicate approach is that it is possible to
verify a concrete implementation against our abstract specification.
We have given a node-list implementation (a cut down version of
a BLink tree), and shown that it satisfies our abstract specification.
We then use it to show that Sagiv’s BLink tree [6] and a hash table
implementation also satisfy the abstract specification. To prove that
an implementation is correct, we need to provide concrete interpre-
tations of each of our abstract predicates for that implementation.
Taking the node-list implementation as an example we shall briefly
outline this process. (Full details can be found in [2].)

Assume we are given a predicate nodeList(h, S) which de-
scribes a list of nodes, each with a maximum capacity of 2k value-
pointer pairs, stored at h containing a set of value-pointer pairs S.
We give the concrete interpretation of the indef predicate as follows:

indef(h, v, p, i) ≡ ∃S. nodeList(h, S) ∧ (v, p) ∈ S
n

A
∗ [CHANGE(v)]ni

This describes two parts of memory. The boxed assertion talks
about the shared memory in a region labelled n. The assertion says
that the region n contains a node-list at h and that the pair (v, p) is
contained somewhere in this list. Boxed assertions on the same re-
gion behave additively under ∗, that is P

n ∗ Q
n ≡ P ∧Q

n
.

The boxed assertion is parameterised by an interference environ-
ment A which describes the possible effects of the environment
on the shared state. The second part of the concrete interpretation
talks about the local (or private) memory of the current thread. In
this case the local part of memory contains a token [CHANGE(v)]
which is associated with shared region n and has permission i. This
token allows the current thread to perform certain actions on the
shared state in region n. In the case of this [CHANGE(v)] token,
the thread may read the pointer at key-value v if it has permission
i > 0. If the thread has full permission on the [CHANGE(v)] to-
ken, i.e. i = 1, then it is also allowed to modify (add or delete)
the pointer at key-value v and it knows that no other thread is ac-
cessing that key-value. The other predicates have similar concrete
interpretations.

The interference environment A is defined in terms of a set
of actions (P Q) which describe how the shared state may
be modified by the environment. For example, in the node-list
implementation a thread may insert a new value-pointer pair into
the index using the following action:

x 7→ node(tid, v0, s, vi+1, y)
∗ [CHANGE(v)]n1 ∧ |s| < 2k
∗ [UNLOCK(x)]l1 ∧ (v, q) 6∈ s

x 7→ node(tid, v0, s

′, vi+1, y)
∗ [MOD(x, v)]n1
∧ s′ = s] (v, p)

The left-hand side of the action describes part of the shared state
before the action and the right-hand side describes how this part of
the shared state n is modified by the action. This action requires
that there is a node x in the shared state that has been locked by
the current thread (with thread identifier tid). This node contains
a set of value-pointer pairs s whose key-values are greater than
the node’s minimum value v0 and less than or equal to the node’s
maximum value vi+1. The set of value-pointer pairs has less than
2k elements, which means there is space in this node to add another
value-pointer pair. The node also contains a pointer y to the next
node in the list. The action then adds the value-pointer pair (v, p) to
the set s. Actions only describe how the shared state is modified, so
there is some token transfer taking place here as well. In particular
the [MOD(x, v)] token is moved from the thread’s local state to the
shared state and the [CHANGE(v)] and [UNLOCK(x)] tokens are
moved from the shared state to the thread’s local state. This token
transfer corresponds to the abstract level permission and predicate
system. In this example the current thread is giving up the right to

modify the key-value v in the node x and it is gaining the right
to change the key-value v in the set as well as the right to unlock
the node x. In this implementation a thread can only obtain the the
right to modify a node (i.e. gain the [MOD(x, v)] token) if it has
the cell x locked and is allowed to change if v has a mapping in the
index (i.e. owns the [CHANGE(v)] and [UNLOCK(x)] tokens). For
a full description of the interference environmentA and the actions
contained within it see [2].

We can now prove that the implementations of the index opera-
tions satisfy the concrete operation specifications. So long as each
of the concrete interpretations of the abstract predicates is stable,
that is invariant under the actions in the interference environment
A, the abstraction of the implementation is sound. This means the
implementation satisfies the abstract specification.

4. Conclusions and further work
We have given an abstract specification of concurrent indexes, and
have shown that implementations using BLink trees and hash ta-
bles are correct. This involved extending recent work on concurrent
abstract predicates with permissions and interference information:
the permissions allow us to prove safety for any possible interleav-
ing of index operations; the interference information enables us to
prove stronger properties about programs. Our reasoning requires
that the abstract operations for manipulating the syntax are local,
only requiring knowledge about the key-value which the operation
manipulates. Notice that it does not require conditions on the im-
plementation, such that the low-level operations are linearisable.

This work provides a first step in a larger project on verifying
concurrent indexes. For example, we will reason about concurrent
BLink tree implementations used in databases and filesystems in
order to get a better understanding of which properties of concur-
rent indexes are useful. We can already think of several natural ex-
tensions to the reasoning presented here. For example, currently
when multiple inserts occur for the same key-value, our reasoning
states that the contents of the pointer are unknown. However, we do
intuitively know the set of pointers, and we could extend our speci-
fications to include this information if it were important. Similarly,
we could track the set of possible return values rather than lose this
information. By focussing our attention on implementations used
in practice, we will obtain an understanding of what kinds of prop-
erties are important for client programs using concurrent indexes.

Acknowledgements: We thank Mike Dodds for many interesting
discussions about this work. In particular, he showed us his unpub-
lished work on using concurrent abstract predicates to reason about
the sieve of Eratosthenes, which contains predicates annotated with
shared state interference.

References
[1] J. Boyland. Checking interference with fractional permissions. Static

Analysis, 2003.
[2] P. da Rocha Pinto. Reasoning about Concurrent Indexes. Master’s

thesis, Imperial College London, 2010.
[3] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and

V. Vafeiadis. Concurrent Abstract Predicates. ECOOP, 2010.
[4] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Abstraction and

Refinement for Local Reasoning. VSTTE, 2010.
[5] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Toward a

verified relational database management system. POPL, 2010.
[6] Y. Sagiv. Concurrent operations on B*-trees with overtaking. Journal

of Computer and System Sciences, 1986.
[7] A. Sexton and H. Thielecke. Reasoning about B+ Trees with Opera-

tional Semantics and Separation Logic. ENTCS, 2008.

	Introduction
	Specifications
	Implementations
	Conclusions and further work

