
Abstract Disjointness and Abstract Atomicity

Pedro da Rocha Pinto1, Thomas Dinsdale-Young2, and Philippa Gardner1

1 Imperial College London
{pmd09,pg}@doc.ic.ac.uk

2 Aarhus University
tyoung@cs.au.dk

Abstract. We look at approaches to specifying concurrent program
modules based on disjointness (the abstraction that concurrent oper-
ations act on disjoint resources) and atomicity (the abstraction that con-
current operations occur at disjoint times). We illustrate the limitations
of these approaches, and propose a novel approach, using atomic triples,
that overcomes them.

The specification and verification of concurrent program modules is a dif-
ficult problem. When concurrent threads work with shared data, the resulting
behaviour can be complex. Two abstractions provide useful simplifications: that
operations effectively act at distinct times; and that operations effectively act on
disjoint resources. Programmers work with sophisticated combinations of time
and data abstractions. In contrast, existing reasoning techniques tend to be lim-
ited to one or other abstraction.

Consider the following implementation of a concurrent counter:3

function read(x) {
r := [x];
return r;
}

function incr(x) {
do {
r := [x];
b := CAS(x, r, r + 1);
} while (b = 0);

}

function wkincr(x) {
r := [x];
[x] := r + 1;

}

The implementation provides an operation, read, that returns the current value
of the counter, and two operations, incr and wkincr, that increment the value
of the counter. The difference between incr and wkincr is that wkincr may not
behave correctly if another thread is concurrently incrementing the counter (but
is potentially faster otherwise4).

3 We assume that memory read, write and compare-and-swap (CAS) operations are
atomic.

4 In a quick and dirty experiment, wkincr was around 60% faster.



2 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner

Sequential Specification. How do we specify such a counter? A good start would
be to give a sequential specification using Hoare triples, such as:{

C(x, n)
}
read(x)

{
C(x, n) ∧ ret = n

}{
C(x, n)

}
incr(x)

{
C(x, n+ 1)

}{
C(x, n)

}
wkincr(x)

{
C(x, n+ 1)

}
In these specifications, the data representation used by the implementation is
abstracted by the predicate C(x, n), which denotes a counter at address x with
value n.

Abstract Disjoint Specification. The above specification captures the sequential
behaviour, but says nothing about concurrency. One way to specify concurrent
behaviour is to use disjointness: each operation acts on specific resources, and
threads that operate on disjoint resources do not interfere, so their effects can
be combined. Concurrent separation logics [5] embody this principle in the form
of a disjoint concurrency rule:{

P1

}
C1

{
Q1

} {
P2

}
C2

{
Q2

}{
P1 ∗ P2

}
C1 ‖ C2

{
Q1 ∗Q2

}
Assertions in separation logic describe resources, and confer ownership of those
resources. The separating conjunction P1 ∗ P2 describes the disjoint combina-
tion of the resources of P1 and P2. The concurrent abstract predicates (CAP) [2]
approach supports specifications with abstract disjoint resources. The imple-
mentation of these abstract resources can involve shared resources. The abstract
disjoint resources may be split, which effectively allows concurrent manipulation
at the abstract level.

Treating the abstract predicate C(x, n) as a resource, we could use the above
sequential specification as a concurrent one. However, for multiple threads to use
the counter, they would have to transfer the resource between each other using
some form of synchronisation. Such a specification effectively enforces sequential
access to the counter. This is because the client has no mechanism for dividing
the resource: in particular,

C(x, n) =⇒ C(x, n) ∗ C(x, n)

does not hold.

Bornat et al. [1] introduced permission accounting to separation logic, which
allows resources to be divided. With fractional permissions, this is achieved by
associating a fraction in the interval (0, 1] with resources; resources may be
subdivided by splitting this fraction. For instance, we may associate fractions
with our counter resources to achieve:

C(x, n, π1 + π2) ⇐⇒ C(x, n, π1) ∗ C(x, n, π2)



Abstract Disjointness and Abstract Atomicity 3

We can modify our counter specification to give concurrent read access:{
C(x, n, π)

}
read(x)

{
C(x, n, π) ∧ ret = n

}{
C(x, n, 1)

}
incr(x)

{
C(x, n+ 1, 1)

}{
C(x, n, 1)

}
wkincr(x)

{
C(x, n+ 1, 1)

}
Note that we require full permission (1) in order to perform either increment
operation. This means that only concurrent reads are permitted; updates must
be synchronised with all other accesses. If only partial permission were neces-
sary, then the specification for read would be incorrect, since it could no longer
guarantee that the value being read matched the resource it had.

To specify concurrent increments, we can instead change how we split counter
resources:

C(x, n1 + n2, π1 + π2) ⇐⇒ C(x, n1, π1) ∗ C(x, n2, π2) (n1, n2 ∈ N)

Now the resource C(x, n, π) no longer asserts that the value of the counter is n
(except if π = 1). Rather, it should be seen as accounting for a contribution of n
to the value of the counter; other threads may also have contributions. We then
specify our counter operations as:{

C(x, n, π)
}
read(x)

{
C(x, n, π) ∧ ret ≥ n

}{
C(x, n, 1)

}
read(x)

{
C(x, n, 1) ∧ ret = n

}{
C(x, n, π)

}
incr(x)

{
C(x, n+ 1, π)

}{
C(x, n, 1)

}
wkincr(x)

{
C(x, n+ 1, 1)

}
This specification at last allows concurrent reads and increments, although

wkincr must still be synchronised with the other operations. The specification
also fails to account for the fact that sequenced reads will never see decreasing
values of the counter (since the contribution is not changed and provides the
only lower bound). We could proceed to describe a more elaborate permission
system that allows wkincr in the presence of reads, and to extend the predicate
to record the last known value as a lower bound for reads. This would give us a
more useful, if somewhat cumbersome, specification. Yet it would not handle a
particularly important use case: synchronisation.

A ticketed lock exemplifies the use of counters for synchronisation. The lock is
acquired by first incrementing one counter to acquire a notional ticket resource.5

When the value of the second counter agrees with this ticket, the resource can
be exchanged for the resource guarded by the lock. This resource is relinquished
when the unlock operation is called, which increments the second counter.6

Such a ticketed lock has been verified using CAP [2]. However, the proof
depends on the atomicity of the underlying operations in order to synchronise

5 This requires that the increment operation should return the value of the counter,
which we chose not to do for simplicity.

6 The increment to the second counter will only be performed by the thread holding
the lock, so wkincr is handy here.



4 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner

access to shared resources. The proof, therefore, would not work with any of our
abstract specifications, since they simply do not embody the necessary atomicity.

Atomic Specification. Atomicity is the abstraction that an operation takes ef-
fect at a single, discrete instant in time. The concurrent behaviour of atomic
operations is equivalent to some sequential interleaving of the operations. Lin-
earisability [4] is a correctness condition which specifies that the operations of a
concurrent module appear to behave atomically. A client can then use these as
if they were simple atomic operations, for example to implement a ticketed lock.

With linearisability, each operation is given a sequential specification, and the
operations are asserted to behave atomically with respect to each other. Given
our sequential specification for the counter, is our implementation linearisable?
If we only consider read and incr, then the answer is ‘yes’; however, adding
wkincr breaks linearisability. The problem with wkincr is that, for instance,
two concurrent calls could result in the counter only being incremented once.
This is not consistent with atomic behaviour.

The essence of the problem is that we only really want wkincr to be called
in a concurrent context where there are no other increments. In such a case, it
would appear to behave atomically. However, by itself the sequential specification
cannot express this constraint. To do so, we introduce a new form of specification,
using atomic triples.

An atomic triple has the following form:

A

x ∈ X. 〈P (x)〉 C 〈Q(x)〉

Superficially, this can be read as “C atomically updates P (x) to Q(x) (for arbi-
trary x ∈ X)”. What it actually means is a bit more subtle.

An implementation of the specification may assume that the assertion P (x0)
holds initially (for some x0 ∈ X). It must tolerate interference from the envi-
ronment updating P (x) to P (x′) (for any x, x′ ∈ X). It is at liberty to update
the state, providing that it preserves P (x) (for the current value of x), until it
updates it to Q(x). After this update Q(x) is no longer available to the imple-
mentation (another thread may be using it). Finally, the implementation cannot
terminate without having update P (x) to Q(x) at some point.

Using the atomic triple, we can specify the counter as:

A

n. 〈C(x, n)〉 read(x) 〈C(x, n) ∧ ret = n〉

A

n. 〈C(x, n)〉 incr(x) 〈C(x, n+ 1)〉
〈C(x, n)〉 wkincr(x) 〈C(x, n+ 1)〉

Intuitively, the first two specifications state the value of the counter will be
read and incremented atomically, even in the presence of concurrent updates
by the environment that change the value of the counter — since the value
n is bound by

A

. However, the environment must preserve the counter, e.g. it
cannot deallocate it. The last specification means that wkincr(x) will atomically
update the counter from n to n+ 1, as long as the environment guarantees that



Abstract Disjointness and Abstract Atomicity 5

the shared counter will not change value before the atomic update — since the
value of n is not bound by

A

.
This counter specification is strong: a client can derive the abstract disjoint

specifications from it. Moreover, it is strong enough to support synchronisation:
the correctness of a ticketed lock can be justified from this counter specification.

There are several benefits to using atomic triples for specifying concurrent
modules. Atomic triples are expressive enough to enforce obligations on both the
client and the implementation. By contrast, CAP specifications tend to unduly
restrict the client (e.g. a counter specification cannot be used for synchronisa-
tion), while linearisability specifications tend to unduly restrict the implemen-
tation (e.g. a counter cannot provide a wkincr operation).

Atomic triples specify operations with respect to an abstraction (e.g. C(x, n)),
which means that each operation can be verified independently. This makes
it possible to extend modules with new operations without having to verify
the existing operations again. Linearisability, by contrast, is a whole module
property: adding new operations (e.g. wkincr) can break the linearisability.

In [6], we introduce a generalised version of the atomic triple that can combine
atomicity with resource transfer. For example, we can specify an operation that
reads the value of the counter into a buffer; the read happens atomically, but
the write to the buffer does not, and so ownership of the buffer is transferred
between the client and implementation. This is not possible with traditional
linearisability, although Gotsman and Yang [3] have proposed an extension of
linearisability that supports ownership transfer.

Conclusions. We have introduced atomic triples as a way to specify abstract
atomic commands. They allow us to overcome the limitations of linearisability by
describing precisely the context that they can be used, effectively specifying when
a client can use them. Moreover, they improve on CAP approaches by allowing
the access of shared resources concurrently, instead of relying on primitive atomic
commands.

In [6], we present TaDA, a program logic for Time and Data Abstraction,
which extends CAP with rules for deriving and using atomic triples. We apply
TaDA to a number of examples, proving implementations of a lock, multiple-
compare-and-swap library, and double-ended queue against atomic specifica-
tions. Each example builds on the specification of the previous one, demon-
strating the modularity of the approach.

References

1. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL. pp. 259–270 (2005)

2. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: ECOOP. pp. 504–528 (2010)

3. Gotsman, A., Yang, H.: Linearizability with ownership transfer. In: CONCUR. pp.
256–271 (2012)



6 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner

4. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (Jul 1990)

5. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1-3), 271–307 (Apr 2007)

6. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A logic for time and
data abstraction. In: ECOOP (2014), to appear


	Abstract Disjointness and Abstract Atomicity

